July 2020, Skoltech, Center for Advanced Studies

Rules:

- Test duration is 3 hours.
- There are 9 problems on 2 pages.
- Please, provide the key points of solutions for all problems. Correct answers are important, but not enough, we want to see that they are not consequences of the wrong solutions.
- You may use $\mathrm{AT}_{\mathrm{E}} \mathrm{Xnotations} \mathrm{to} \mathrm{type} \mathrm{your} \mathrm{solutions:} \mathrm{we} \mathrm{can} \mathrm{either} \mathrm{read} \mathrm{it} ,\mathrm{or} \mathrm{compile}$. Scans or photos of solutions are also fine, if the proctor allows it. In this case please send a separate file for every problem.

Problems:

1. Integral

Calculate the integral (the integration contour is oriented counter-clockwise)

$$
\frac{1}{2 \pi i} \oint_{|z|=1} \frac{z d z}{\cos \frac{1}{z}+\cos \frac{2}{z}} .
$$

2. Quantum mechanics.

Find eigenvalues and their degeneracies for the following Hamiltonian:

$$
\hat{H}=\sum_{i=0}^{N-1} \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x}
$$

acting on $\left(\mathbb{C}^{2}\right)^{\otimes(N+1)}$, where

$$
\hat{\sigma}_{i}^{x}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{\otimes i} \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{\otimes(N-i)} .
$$

3. Matrices over \mathbb{F}_{p}.

How many 2×2 matrices over the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}, p$ is a prime number, have trace 1 and determinant 0 ?
4. Zeroes in the unit circle.

How many zeroes does the function $f(z)=z^{8}+10 z^{3}+1$ have in the unit circle $|z|<1$?

5. Abelian groups.

Find all possible non-isomorphic abelian groups A such that there exists the short exact sequence

$$
0 \rightarrow \mathbb{Z} / 10 \mathbb{Z} \rightarrow A \rightarrow \mathbb{Z} / 15 \mathbb{Z} \rightarrow 0 .
$$

Present only one group from each isomorphism class.

6. Product of matrices.

Find

$$
\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & -1 & \lambda
\end{array}\right)^{100} .
$$

7. Classical mechanics.

Find frequencies of all normal modes of the system in the figure below:

Its Hamiltonian is given by

$$
H=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+\frac{k}{2}\left(x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}\right) .
$$

8. Representation.

Consider a map φ from the Lie algebra $\mathfrak{s l}_{2}$ to the algebra of differential operators

$$
\varphi(e)=\alpha \frac{d^{2}}{d z^{2}}, \quad \varphi(f)=\beta z^{2} .
$$

(a) Find for which α, β this map can be lifted to a representation of $\mathfrak{s l}_{2}$ on the space of polynomials $\mathbb{C}[z]$.
(b) Express quadratic Casimir C (i.e. quadratic central element of the universal enveloping algebra $\left.U\left(\mathfrak{s l}_{2}\right)\right)$ in terms of e, f, h. Calculate its action in this representation.

9. Morse functions.

Consider a three-dimensional torus with coordinates $x, y, z \in[0,2 \pi]$. For the following functions
(a) $f_{a}=\sin x \sin y \sin z$,
(b) $f_{b}=\sin x+\sin y+\sin z$,
figure out if they are Morse functions. For Morse functions find critical points and their indices.

