## 17 July 2021, Skoltech, Center for Advanced Studies

## Rules

- Test duration is 3 hours.
- There are 9 problems on 2 pages.
- Please, provide the key points of solutions for all problems. Correct answers are important, but not sufficient, we want to see that they are not consequences of the wrong solutions.
- You may use $\mathrm{HT} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ notation to type your solutions: we can read it, or compile. Scans or photos of solutions are also fine, if the proctor allows it. In this case please send a separate file for each problem.


## Problems

## 1. Integral.

Compute Gaussian integral

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{-\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 4 \\
-2 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}\right\} d x_{1} d x_{2}
$$

## 2. Jordan blocks.

Denote by $J_{n}(\lambda)$ Jordan block of size $n \times n$ corresponding to eigenvalue $\lambda$. Find Jordan decomposition of the tensor product of two operators, $J_{4}(0)$ and $J_{6}(0)$ :

$$
J_{4}(0) \otimes J_{6}(0)=\bigoplus_{i} J_{k_{i}}\left(\lambda_{i}\right) .
$$

## 3. Stokes theorem.

Write down a Lagrangian for the particle of mass $m$ and electric charge $e$ moving in the 3-dimensional magnetic field

$$
\vec{B}=g \frac{\vec{r}}{|\vec{r}|^{3}} .
$$

Find a non-trivial integral of motion, different from energy.

## 4. Generating function.

Let $a(n)$ be a number of partitions of $n$ into sum of different positive odd integer summands. For example $a(0)=1$ and $a(16)=5$ since

$$
16=1+15=3+13=5+11=7+9=1+3+5+7 .
$$

Find generating function $\sum_{n=0}^{\infty} a(n) q^{n}$.
5. Quantum mechanics.

Consider the Hamiltonian

$$
\hat{H}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right)+a x .
$$

Find its ground state energy up to corrections of order $O\left(a^{5}\right)$.

## 6. Lie algebras.

Lie algebra $\mathfrak{g l}_{3}$ of all $3 \times 3$ matrices contains Lie subalgebra $\mathfrak{s o}_{3}$ of antisymmetric $3 \times 3$ matrices. Consider adjoint action of this $\mathfrak{s o}_{3}$ on $\mathfrak{g l}_{3}$. Find the decomposition of $\mathfrak{g l}_{3}$ into the direct sum of irreducible representations of $\mathfrak{s o}_{3}$ under such action. Find dimensions of corresponding irreducible representations.
7. Fiber bundle.

Let $E=\mathbb{C P}^{3}$ be a 3 -dimensional complex projective space, and $B=S^{4}$ be a 4 -dimensional sphere. Find any fiber bundle with total space $E$ and base $B$. What is the fiber?
8. Taylor series.

Find radius of convergence of the Taylor series

$$
\sum_{n=0}^{\infty} \frac{B_{n} z^{n}}{n!}=\frac{z}{e^{z}-1} .
$$

9. Torus.

Let $T$ be a two-dimensional torus. The group $G$ of order 3 acts on $T$ in such a way that the quotient is homeomorphic to a sphere. Find the number of points in $T$ invariant under the action of $G$.

