April 2021, Skoltech, Center for Advanced Studies

Rules

- Test duration is 3 hours.
- There are 9 problems on 2 pages.
- Please, provide the key points of solutions for all problems. Correct answers are important, but not sufficient, we want to see that they are not consequences of the wrong solutions.
- You may use $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$ notation to type your solutions: we can read it, or compile. Scans or photos of solutions are also fine, if the proctor allows it. In this case please send a separate file for each problem.

Problems

1. Integral.

Compute the integral

$$
\int_{0}^{2 \pi} d \phi\left(\frac{1}{5+e^{-i \phi}}-\frac{1}{5-3 e^{-i \phi}}\right)
$$

2. Exponential map.

Describe all $S L(2, \mathbb{C})$ matrices that are not in the image of the exponential map

$$
\exp : \mathfrak{s l}(2, \mathbb{C}) \rightarrow S L(2, \mathbb{C})
$$

3. Inverse cubic potential.

A classical non-relativistic particle of mass m moves in three dimensions along a closed trajectory in the potential

$$
U(r)=-\frac{\alpha}{|\vec{r}|^{3}}, \quad \alpha>0
$$

with angular momentum L. Find the minimal and the maximal value of $|\vec{r}|$ on this trajectory.

4. Matrix polynomial.

Find a non-zero polynomial $P(z) \in \mathbb{Q}[z]$ of minimal possible degree with rational coefficients such that $P(A)=0$, where

$$
A=\left(\begin{array}{cc}
\sqrt{3} & 1 \\
2 & \sqrt{3}
\end{array}\right)
$$

5. Quantum mechanics.

Find spectrum of the Hamiltonian

$$
H=a^{\dagger} a+b^{\dagger} b+\frac{\lambda}{2}\left(a+a^{\dagger}\right)\left(b+b^{\dagger}\right), \quad 0<\lambda<1
$$

where $a, b, a^{\dagger}, b^{\dagger}$ are annihilation and creation operators with the commutation relations

$$
\left[a, a^{\dagger}\right]=1, \quad\left[b, b^{\dagger}\right]=1, \quad[a, b]=\left[a, b^{\dagger}\right]=\left[a^{\dagger}, b\right]=\left[a^{\dagger}, b^{\dagger}\right]=0
$$

6. Space of polynomials.

Find the dimension of the vector space of homogeneous polynomials of degree k in n variables.

7. Singular points.

Let $F\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{5}+\sum_{i, j=1}^{3} a_{i j} z_{i} z_{j}$ be a polynomial with complex coefficients. It defines a map $F: \mathbb{C}^{3} \rightarrow \mathbb{C}$. Assume that any fiber of this map has only isolated singularities. Under this assumption find minimal and maximal possible number of singular fibers.
8. Limit.

Find the limit

$$
\lim _{N \rightarrow \infty} \sqrt{N} \int_{-\infty}^{+\infty} \frac{d x}{\left(1+x^{2}\right)^{N}}
$$

9. Homology.

Find homology groups with integer coefficients for the following surface obtained by gluing sides of the octagon Σ :

One should glue (identify) two blue sides, $\overrightarrow{C D}$ and $\overrightarrow{G H}$, labelled by a, according to the direction of the arrows, and also glue two red sides, $\overrightarrow{B A}$ and $\overrightarrow{F E}$, labelled by b, according to the direction of their arrows. The other four sides are not glued.

