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Introduction

Historical review

The system of one-dimensional particles with inverse-square pairwise interactions has
played a great role in mathematical and theoretical physics for the past 40 years. This
model arises and has different applications in various fields of physics, such as condensed
matter physics, spin chains, gauge theory, and string theory and constitutes the main
example of integrable and solvable many-body system. In the literature, it is labeled by
the names of F. Calogero, B. Sutherland and Y. Moser. The system of identical particles
scattering on the line with inverse-square potential was as first introduced by F. Calogero
in 1971 [10]. Its Hamiltonian is

H =
N∑
i=1

p2
i

2
+
∑
i<j

g

(qi − qj)2
.

where we use the standard notations of momentums and coordinates. Here the particle
masses are scaled to unity , g is the coupling constant. We consider a periodic version
of the system (for example, with the period 2π), assuming that infinitely many images of
particles interact, then the two-body potential becomes

V (x) =
∞∑

n=−∞

g

(x+ 2πn)2
=

g

2 sin x
2

.

This was introduced by B. Sutherland in 1971 [55]. It is convenient to use the following
parametrization of the coupling constant:

g = β(β − 1).

We consider a system of N identical particles on a circle of length L, which we will call
the quantum Calogero-Sutherland system, with the following Hamiltonian

H = −
N∑
i=1

(
∂

∂qi

)2

+ 2
(π
L

)2
N∑
i<j

β(β − 1)

sin2
(
π
L

(qi − qj)
) , (0.1)

which is the main point of our research. It is natural to consider periodic wave functions
of the system

φ(q1, . . . , qi + L, . . . , qN) = φ(q1, . . . , qi, . . . , qN).

The function
φ0(q) = φ0(q1, . . . , . . . , qN) =

∏
i<j

|sin(
π

L
(qi − qj))|β

represents the vacuum state with eigenenergy [23]

E0 = (πβ/L)2N(N2 − 1)/3.

Applying the transformation φ0(q)−1Hφ0(q) and passing to the collective variables xi =

e
2πiqi
L , we arrive to the effective Hamiltonian

H =
N∑
i=1

(
xi

∂

∂xi

)2

+ β
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
. (0.2)
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The Hamiltonian (0.2) is a differential-difference operator. It turns out that there is
a family of commuting differential-difference operators that includes (0.2). This family
can be constructed using the Heckman-Dunkl operators [15, 17]. We give the expressions
of them in the form suggested in [46]:

D
(N)
i = xi

∂

∂xi
+ β

∑
j 6=i

xi
xi − xj

(1−Kij) , (0.3)

where Kij is a permutation operator. Symmetric polynomials in D
(N)
i commute [17].

Denote by

H
(N)
k = Res+

(∑
i

(
D

(N)
i

)k)
, (0.4)

where Res+ means a restriction on the space of symmetric polynomials. The operators

H
(N)
k can be chosen as the higher Hamiltonians of the Calogero-Sutherland model. In

particular, H = H
(N)
2 .

The eigenfunctions of commuting operators H
(N)
k are symmetric polynomials in N

variables with the parameter α = 1
β
, which are called Jack polynomials [21]. They are

parametrized by the partitions and constitute a generalization of Schur polynomials and
a special case of symmetric Macdonald polynomials with two parameters q, t [30, 31].
Putting q, t → 1 and assuming that q = tα, we obtain Jack polynomials. It is known a
family of difference operators for which Macdonald polynomials are eigenfunctions [30]. In
the case of Jack polynomials these operators were introduced by J. Sekiguchi [51] and A.
Debiard [13]. The Sekiguchi-Debiard operators are degeneration of Macdonald operators.
In fact, they do not coincide with the operators given in (0.4), but can be expressed as a
polynomial in (0.4).

The construction of Macdonald polynomials and corresponding commuting difference
operators is also known for an arbitrary root system [12, 32, 33]. A generalization of Jack
polynomials for arbitrary root systems was introduced by G. Heckman and E. Opdam
and is called Jacobi polynomials associated with the root system [18, 19, 20, 44]. Jack
polynomials is associated with the root system An. We consider only this case. We remark
that the Calogero- Sutherland system is an integrable system corresponding to the root
system AN−1, following M. Olshanetsky and A. Perelomov [42].

Naturally, there is a question about the description of the model where the number
of particles N tends to infinity. In papers [4, 6, 7, 22, 46] from the 80’s to early 90’s
there were presented the explicit answers for the limit of the second Hamiltonian (0.2)
in the bosonic Fock space. About 20 years later, the general construction of commuting
Hamiltonians in the bosonic Fock space was presented by M. Nazarov and E. Sklyanin [40]
and independently by A. Veselov and A. Sergeev [52]. Developing Macdonald’s ideas, M.
Nazarov and E. Sklyanin in [40] found the expressions for Sekiguchi-Debyard operators in
the limit where N tends to infinity. The main tool was the theory of symmetric functions.
Symmetric functions can be considered as symmetric polynomials in infinite number of
variables. The zero sector of the bosonic Fock space can be identified with the ring of
symmetric functions, which is formally defined as the projective limit of rings of symmetric
polynomials. Thus there was constructed a family of operators whose eigenfunctions are
Jack symmetric functions.

In [39],[52] another construction of the limit for Calogero-Sutherland model in the
bosonic Fock space was presented. The main idea was to use the family of Dunkl operators

5



(0.3) as a quantum L-operator of the system. For Calogero systems the L-operator was
already known [37] and was similar to the action of the family of Dunkl operators, written
in matrix form in a suitable basis. Thus a precise construction of higher Hamiltonians in
the bosonic Fock space was suggested and this allowed to show that the limiting system
is integrable. The resulting system can be considered as a quantum analogue of the
integrable hierarchy of the Benjamin-Ono equation [1, 47].

For special value of the coupling constant the symmetric Jack functions become
Schur functions , and the Benjamin-Ono equation respectively degenerates into the dis-
persionless KdV equation (or the so-called Burger’s equation). The exact construction of
commuting Hamiltonians of the quantum dispersionless KdV equation can be obtained
directly from the boson-fermion correspondence and was presented by A. Pogrebkov in
[45]. Hamiltonians can be obtained recurrently [45] or in terms of the generating function
[41, 50].

We consider the spin Calogero-Sutherland systems which are generalizations of these
models, where extra degrees of freedom are involved, which are usually interpreted as
spin variables. Integrability of the Calogero system has been studied in numerous papers,
see for example [29]. The Calogero-Sutherland spin system is superintegrable due to
N. Reshetikhin [48, 49]. In this paper, we will use a special case of the spin model
corresponding to the root system AN and the representation of the higher weight of slN .
In this case, the numerator of the potential of Hamiltonian (0.1) will be β(β−Kij), where
Kij is the coordinate exchange operator of i-th and j-th particles, and the dependence on
spin is implicit.

The spin CS system has the Yangian symmetry, in other words the Hamiltonians
of the Calogero-Sutherland system commute with the Yangian action, moreover they are
expressed through the central elements of the Yangian elements. The presence of Yangian
symmetry is directly related to the Dunkl operators. They satisfy the relations of the
degenerate affine Hecke algebra, which in turn allows us to construct the representation
of the Yangian Y(gls) according to the general construction [5, 14]. Thus, the higher
Hamiltonians of the system can be chosen as the center of the Yangian, namely, as the
coefficients of the quantum determinant.

In the symmetric case the limit expression N for the second Hamiltonian in collective
variables was obtained in [7]. The antisymmetric limit of the spin system was studied by
D. Uglov in [56, 58]. D. Uglov studied the projective properties of the Yangian action for
a finite system, namely, he presented a formula of renornalization of the transfer matrix
of the Yangian in order form a projective system and the action was stabilized. Also D.
Uglov decomposed the corresponding Fock space into irreducible components with respect
to the Yangian action and found the spectrum of Hamiltonians.

State of the problem and main results

The main purpose of this work is to study the limits of the Calogero-Sutherland system
in the scalar and spin cases when the number of particles N tends to infinity. In each case
we study the bosonic and fermionic limit corresponding to the symmetric and antisym-
metric wave functions of the system. Here we list the results, further we give the precise
formulations.

For the fermionic limit of the scalar system, we derive a limit expression for the
Dunkl operator via free fermionic fields, see Theorem 2.1, which allows us to present
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the construction of commuting Hamiltonians in the Fock space, see Proposition 2.4. In
the case of the value of the coupling constant β = 0, we get an explicit formula for the
generating function of Hamiltonians that differs from the previously known ones. The first
one is given as a bosonic normal ordered answer, see Proposition 3.1. The second formula
is given in terms of simple integral operator, but is not normal ordered, see Proposition
3.2.

The spin CS system has the Yangian symmetries. In fact the action of Yangian
generators as well as Hamiltonians in scalar case do not form a projective system. So
we study the projective properties of the Yangian action and formulate the results in
Proposition 4.1 and Proposition 4.2.

For spin system we realize the bosonic and fermionic limit in a multicomponent Fock
space. We introduce the maps to finite system and construct the pullback of finite Dunkl
operators in terms of vertex operators in bosonic case and in terms of free fermion fields
in fermionic case, see Proposition 5.1 and Proposition 6.1. The limit of Dunkl opera-
tor allows to construct the corresponding Yangian representation in the Fock space, see
Theorem 5.1 and Theorem 6.1. In the bosonic case we investigate the classical limit, see
Propositions 5.3 and 5.4.

1. Bosonic limit of Calogero-Sutherland system. In the first section we review
recent results [39, 52] concerning the bosonic limit of Calogero-Sutherland system and
rewrite them in a language of vertex operators. We use the notations differing from
[39, 52] but more convinient for our purpose and clearifying the further exposition.

We begin with the description of the finite CS system restricted on the ring of sym-
metric polynomials in N variables. The main idea is to regard the equivariant Heckman-
Dunkl operators as a quantum L-operator acting on the space of polynomial functions
of one variable with coefficients being symmetric polynomials of the remaining N − 1
variables. Clearly, the Dunkl operator D

(N)
i itself preserves the symmetry involving all

variables other than xi and therefore it acts on the space ΛN,i
+ of functions symmetric in

all variables except xi.
The action of the higher Hamiltonian (0.4) can be obtained by the following proce-

dure: we start with a symmetric polynomial f(x1, . . . , xN) ∈ ΛN
+ and construct a vector

of its N copies. The action the k-th power of Dunkl operator (D̃
(N)
i )k provides a family

of N equivariant functions: fi(x1, . . . ;xi; . . . xN) = (D̃
(N)
i )kf(x1, . . . , xN) ∈ ΛN,i

+ such that

• fi(x1, . . . ;xi; . . . xN) is a polynomial symmetric in all variables except xi

•
Kijfi = fj. (0.5)

For g(x1, . . . ;xi; . . . xN) ∈ ΛN,i
+ we introduce an operator of its symmetrization

EN g =
N∑
j=1

Kijg.

Then we apply EN to a function fi from an equivariant family (0.5):

EN fi =
N∑
j=1

fj
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This procedure can be illustrated by the following matrix formula:

H̃k =
(
1, 1, . . .

)

x1

∂
∂x1

+ β

N∑
i=2

x1

x1 − xi
−β x1

x1−x2 . . .

−β x2
x2−x1 x2

∂
∂x2

+ β
∑
i 6=2

x2

x2 − xi
...

... . . .
. . .



k

f

f
...
f


,

which resembles the Lax matrix (see [37]) for CS system.

We reformulate the procedure in terms of the Newton polynomials p
(N)
k = xk1+· · ·+xkN

and express the Heckman-Dunkl operators via finite analogous V+(z), V ′+(z) of the vertex
operators Φ(z), Φ−1(z) and the negative part of derivative of the bosonic field ϕ−(z),
given by the formulas:

Φ(z) = exp

(∑
n>0

zn
∂

∂pn

)
, ϕ−(z) =

(∑
n≥0

pn
zn

)
.

To do that we present a symmetric polynomial in the following form

f(p
(N)
1 , p

(N)
2 , p

(N)
3 , . . . )

The operator V+(xi) changes each occurrence of a Newton sum p
(N)
k by p

(N−1)
k + xki , so

V+(xi)f ∈ ΛN,i
+ is a Taylor decomposition of polynomial f by variable xi.

To symmetrize the function F (xi, {p(N−1)
n }) ∈ ΛN,i

+ we use the the formal intagral

EN F ({pn}) =

∮
dξ

ξ
ϕ−(ξ)

(
V ′+(ξ)F

)
(ξ; {pn}).

which counts the residue at infinity. The operator V ′+(ξ) changes each occurrence of a

Newton sum p
(N−1)
k by p

(N)
k − ξk. Then the integral

∮
dξ
ξ
ϕ−(ξ) changes each item ξk by

p
(N)
k .

In section 1.3 we realize the bosonic limit in the extended ring of symmetric functions
Λ̂. Let Λ̂ = Λ[p0] be a ring symmetric functions [30] extended by a free variable p0.The
space Λ̂ is an irreducible representation of the Heisenberg algebra H, generated by the

elements pn and
∂

∂pn
and can be regarded as a polynomial version of the Fock space. It

contains the vacuum vector |0〉+, such that

∂

∂pn
|0〉+ = 0, n = 0, 1, . . . .

The dual vacuum vector +〈0| satisfies the condition

+〈0|pn = 0, n = 0, 1, . . . .

We define a projection π̃N : Λ̂ → ΛN
+ for an element |v〉+ ∈ Λ̂ as the following matrix

element:
π̃N |v〉+ = +〈0|Φ(xN) . . .Φ(x2)Φ(x1)|v〉+.
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This projection maps pk to the corresponding Newton polynomial in N variables:

π̃N : pk → p
(N)
k =

N∑
i=1

xki , p0 → N.

We define a linear map S : Λ̂⊗ C[z]→ Λ̂ as

SF ({pn}) =

∮
dξ

ξ
ϕ−(ξ)Φ−1(ξ)F (ξ, {pn}).

and prove that the map S is the pullback of the finite symmetrization EN under the map
π̃N :

EN π̃N−1F (z, {pn}) = π̃NS(F (z, {pn}).
We present the main result of this section:
Theorem 1.1 The operator D̃ : Λ̂⊗ C[z]→ Λ̂⊗ C[z] given by

D̃(F (z, {pn})) = z
∂

∂z
F (z, {pn}) + βz

∮
dξ

ξ2

1

1− z
ξ

Φ∗(ξ)Φ(z)F (ξ, {pn}).

is a limit of Dunkl operators D̃
(N)
i .

In other words, the operator D̃ is a pullback of D̃
(N)
i under the map π̃N . This result

was formulated before in [39, 52] in other terms, here we present the formula in the lan-
guage of vertex operators. This theorem implies the following

Proposition 1.2 The operators H̃k = SD̃kΦ(z) : Λ̂→ Λ̂,

H̃k : Λ̂
Φ(z)−−→ Λ̂⊗ C[z]

Dk−→ Λ̂⊗ C[z]
S−→ Λ̂,

generate a commutative family of Hamiltonians of the limiting system [39, 52].

In section 1.4 we show that in classical limit this system becomes the Benjamin-Ono
hierarchy following [39].

2. Fermionic limit of CS system.
The second section is devoted to the fermionic limit of Calogero-Sutherland model,

we describe the results of paper [25]. In this case the particles are fermions and we deal
with the antisymmetric wave functions.

As well as in bosonic case we begin with the description of the CS system restricted
to the space of antisymmetric polynomials ΛN

− in terms of Heckman–Dunkl operators. We
then express Heckman–Dunkl operators via finite analogs V−(z)V+(z) and V ′−(z)V ′+(z) of
vertex operators Ψ(z) and Ψ∗(z), where

Ψ(z) = zp0 exp

(
−
∑
n>0

pn
nzn

)
exp

(∑
n≥0

zn
∂

∂pn

)

Ψ∗(z) = z−p0 exp

(∑
n>0

pn
nzn

)
exp

(
−
∑
n≥0

zn
∂

∂pn

)
.
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To do this we present any antisymmetric polynomial in N variables as∏
i>j

(xi − xj)f(p
(N)
1 , p

(N)
2 , p

(N)
3 , . . . )

where p
(N)
k = xk1 + . . . + xkN . The operator V+(x1) changes each occurrence of p

(N)
k by

p
(N−1)
k + xk1, while the operator

V−(x1) = xN1 exp

(
−
∑
n>0

p
(N−1)
n

nxn1

)

is the multiplication by
∏N

i=2(x1 − xi), so that the application of V−(x1)V+(x1) to an
antisymmetric polynomial g(x1, ..., xN) is just its Taylor decomposition with respect to
x1. On the other hand, the operators V ′−(z)V ′+(z) are used for the total antisymmetrization
of the functions, antisymmetric with respect to all variables except one. This is done in
Section 2.1.

In the next subsection we realize a limit in the polynomial Fock space Λ̂. To each
vector |v〉 of Λ̂ we attach a family {π̄N(v)} of antisymmentric functions of N variables,
given by matrix elements

π̄N(v) = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉. (0.6)

The goal is to construct operators in the space Λ̂ which are compatible with finite CS
Hamiltonians with respect to evaluation maps (0.6). This is done following E.Sklyanin
ideology [39, 27]: we introduce an auxillary space U ⊂ C[z, z−1]]⊗ Λ̂ and its evaluations
to the spaces of polynomials antisymmetric with respect to all variables except one. We
present operators, acting in U which are compatible with the above evaluation maps.

The key point of the construction is an operator of integral average A : C[z, z−1]]⊗
Λ̂ → Λ̂, which is the limiting analogue of finite antisymmetrization. Let F (z) ∈
C[z, z−1]]⊗ Λ̂, then we define AF ∈ Λ̂ by the following formula:

AF =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
.

In Lemma 2.3 we show that A : U → Λ̂ is a pullback of finite antisymmetrization.
Further we define an operator D : C[z, z−1]] ⊗ Λ̂ → C[z, z−1]] ⊗ Λ̂ by the following

formula

DF (z) = z
∂

∂z
F (z) + β

1

(2πi)2

∫
w	0

dw

∫
u	w

du

(u− w)

Ψ∗(u)(
1− w

z

) (Ψ(w)F (z)−Ψ(z)F (w)) .

and prove

Theorem 2.1 The operator D acting on the auxillary space U is a pullback of Heckman–
Dunkl operators D

(N)
i under the map π̄N .

The Hamiltonians of finite system with N particles in antisymmetric case can be
expressed by meas of Dunkl operators analogously (0.4):

H̄
(N)
k = Res−

(∑
i

(
D

(N)
i

)k)
,

10



where Res means the restriction on the space of antysymmetric polynomials ΛN
− . We

construct the limiting Hamiltonians Hk which are the pullbacks of finite Hamiltonians
H̄

(N)
k :

H̄
(N)
k π̄ = π̄Hk.

We define the operators
Hk = ADkΨ(z) : Λ̂→ Λ̂ (0.7)

and formulate

Proposition 2.4 The operators Hk generate a commutative family of operators in the
space Λ̂.

The constructed Hamiltonians form a commutative family of operators in the space
Λ̂. Moreover, they commute inside the Heisenberg algebra and thus can be used as well
in its other representations, for instance, in the bosonic Fock space. We can define the
projection πN : F → ΛN

− similar to (0.6)

πN(v) = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉.

In fact it is nonzero only on the N -th sector FN of the Fock space. Now the con-
structed Hamiltonians Hk are compatible with respect to the maps πN , the commutativity
πNHk = H̄

(N)
k πN is nontrivial on the N -th sector FN . We reformulate the same construc-

tion in the fermionic Fock space represented as space of semi-infinite wedges, we define
the projection analogous to πN which acts as a “cutting” of the wedge. We discuss this
in Section 2.3.

3. Generating functions of commuting Hamiltonians for some special val-
ues of coupling constant.
In this section we consider the special case β = 0 of antisymmetric limit. (we use the
notations for Hamiltonians as in previous section, where we assume β = 0). In this case
the Hamiltonians (0.7) can be simply expressed as operators on the fermionic Fock space

Hn =
∑
k

...knψ∗kψk
....

The boson-fermion correspondence allows to express Hn in the bosonic Fock space, it was
done by A. Pogrebkov [45] for the additive version and later by P. Rossi [50] on the circle.

Here we derive the two formulas for the densities for Hn that was not known before,
we present the results given in [35]. In case β = 0 the Dunkl operator is simply the
differential operator

(
z ∂
∂z

)
and the Hamiltonians (0.7) are expressed from the densities

Hk = 1
2πi

∫
z	0

dz
z
Wk(z) which is given by

Wk(z) =
1

2πi

∫
u	z

du
Ψ∗(u)

u− z

(
z
∂

∂z

)k
Ψ(z).

These Hamiltonians are the pullbacks of simple differential operators H̄
(N)
k =

∑N
i=1

(
xi

∂
∂xi

)k
.

We derive first formula by calculating the integral in variable u in Wk(z) using the bosonic
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calculus. This gives the following answer

Proposition 3.1 The exponential generating function W (z, x) for densities Wk(z) is given
by the formula

W (z, x) =
∞∑
k=0

xk

k!
Wk(z) =

: exp
(
x
(
z ∂
∂z

+ ϕ(z)
))

: −1

ex − 1

and satisfies the differential equation

∂W (x, z)

∂x
=: ϕ(z)W (z, x) : +z

∂W (x, z)

∂z
− exW (z, x)− ϕ(z)

ex − 1
.

Here the exponent of operator means the formal series acting on the identity:

exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
= 1 + xϕ(z) +

x

2!

(
ϕ2(z) + z

∂

∂z
ϕ(z)

)
+ . . .

The second formula can be obtained by fermionic calculus and expressed in terms of
integral operator. We introduce an integral operator K : F⊗C[[z, z−1]]→ F⊗C[[z, z−1]],
given by the formula

K [f(z)] =
1

2πi

∫
w	z

dw

w − z
ϕ(w)f(z),

here f(z) ∈ F ⊗ C[[z, z−1]]. Then we present the explicit formulas for the Hamiltonians
by the following

Proposition 3.2 The exponential generating function for the Hamiltonians is given by

H (x) =
1

2πi(ex − 1)

∫
z	0

dz
exK − 1

K

[
ϕ(z)

z

]
.

The Hamiltonians can be expressed by the formula:

Hn =
1

2πi

∫
z	0

dz

(
1

n+ 1

n∑
l=0

(
n+ 1

l + 1

)
Bn−lK

l

[
ϕ(z)

z

])
.

Here Bn mean the Bernoulli numbers and the operator exK−1
K

means a formal power series
in K:

exK − 1

K
= x+

x2

2
K +

x3

6
K2 +

x4

24
K3 + . . . .

We note that the answer for the Hamiltonians given in Proposition 3.2 is not normal
ordered.

The Hamiltonians Hn commute, thus we can derive an hierarchy of time evolutions
defined by these commutative flows as

ϕtn(z) = [Hn, ϕ(z)].

12



We derive the explicit formulas and formulate the result by the following

Lemma 3.5 The hierarchy of time evolutions defined by commutative family (3.2) is
given by

ϕtk(z) =
1

2
B(x) :

∫
x	0

dx
k!

xk+1
sinh

(
xz

∂

∂z

)
exS(xz ∂

∂z
)ϕ(z) : .

The classical limit of this hierarchy is the dispersionless KdV hierarchy on the circle [45].

4. Dunkl operators and representation of the Yangian Y(gls).
The phase space of the quantum spin Calogero-Sutherland (CS) system consists of func-
tions with values in vector space (Cs)⊗N while the dependence on spin in the Hamiltonian

HCS = −
N∑
i=1

(
∂

∂qi

)2

+
N∑

i,j=1

β(β −Kij)

sin2(qi − qj)
,

is implicit [23]. Here Kij is the coordinate exchange operator of particles i and j. After
conjugating by the function

∏
i<j|sin(qi− qj)|β which represents the degenerated vacuum

state, and passing to the exponential variables xi = e2πiqi and the parameter α = β−1

more common in mathematical literature, we arrive after simple rescaling to the effective
Hamiltonian

H = α
N∑
i=1

(
xi

∂

∂xi

)2

+
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
− 2

∑
i<j

xixj

(xi − xj)2 (1−Kij) ,

which we restrict to the spaces Λs,N
± of total invariants or respectively skewinvariants of

the symmetric group SN in the space V ⊗N ,

Λs,N
± =

(
V ⊗N

)(±)
.

Here V = C[z]⊗ Cs. The (skew)invariants are taken with respect to the diagonal action
of the symmetric groups, σij 7→ KijPij, where Kij is as above and Pij is the permutation
of i-th and j-th tensor copy of the vector space Cs.

Further we use the Heckman–Dunkl operators D(N)
i : V ⊗ Λs,N−1

± → V ⊗ Λs,N−1
± in

the form suggested by Polychronakos [46]:

D(N)
i = αxi

∂

∂xi
+
∑
j 6=i

xi
xi − xj

(1−Kij) .

These operators satisfy the relations

KijD(N)
i = D(N)

j Kij,

[D(N)
i ,D(N)

j ] = (D(N)
j −D(N)

i )Kij,

which coincide with the relations of the degenerate affine Hecke algebra HN . By Drin-
feld duality [14], this representation of degenerate affine Hecke algebra transforms to the
representation of the Yangian Y(gls) in Λs,N

± , see [5, 28]

tab(u) = δab +
∑
i

Eab,i

u±D(N)
i

. (0.8)

13



Here Eab,i describes the action of gls on i-th tensor component,

Eab,i

(
. . .⊗ (ec ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)

= δbc

(
. . .⊗ (ea ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)
.

and tab(u), a, b = 1, . . . s,

tab(u) = δab +
∞∑
i=0

tab,iu
−i−1

are generating functions of the generators tab,i of the Yangian Y(gls). The defining rela-
tions of Y(gls) are [36]

[tab(u), tcd(v)] =
tcb(u)tad(v)− tcb(v)tad(u)

u− v
.

Then the higher Hamiltonians of spin CS system can be chosen as coefficients of the
quantum determinant

q det t(u) =
∑
σ∈Sm

(−1)sgn(σ)tσ(1),1(u)tσ(2),2(u− 1)...tσ(m),m(u−m+ 1).

which generate the center of the Y(gls) [9, 36].
Our main goal is to construct the limit of the above Yangian action when N tends to

infinity. In particular, we get the limits of the above commuting family of Hamiltonians.
To construct the limit we need investigate the projective properties of the Yangian actions
in phase spaces Λs,N

± of CS model. Such an analysis was done by D.Uglov in [57], but our
description differs from that of [57].

The rings ΛN
+ of scalar symmetric functions form the projective system with respect

to the maps

ω+
N : ΛN

+ → ΛN−1
+ , ω+

Nf(x1, . . . , xN) = f(x1, . . . , xN−1, 0).

Analogously, the spaces ΛN
− of scalar skewsymmetric functions form the projective system

with respect to the maps

ω−N : ΛN
− → ΛN−1

− , ω−Nf(x1, . . . , xN) = (x1 . . . xN−1)−1f(x1, . . . , xN−1, 0).

Contrary to the ring of symmetric functions, the space Λ̂ is not the projective limit
of the spaces of (skew)symmetric functions due to the presence of zero mode p0. On the
other hand, CS Hamiltonians Hk themselves in both symmetric and skewsymmetric cases
do not form a projective family since they do not respect natural projections

ω+
NH

(N+1)
k 6= H

(N)
k ω+

N .

Let

T (u) =
s∑

a,b=1

Eab ⊗ tab(u) ∈ End(Cs)⊗ Y(gls)[u
−1]

be the generating matrix of Yangian generators. Denote by TN(u) the transfer matrix
corresponding to the representation (0.8) , here index N denotes the number of parti-
cles. In scalar case (s = 1) the transfer matrix TN(u) is the generating function of the
Hamiltonians

TN(u) = 1 +
1

u
H

(N)
0 +

1

u2
H

(N)
1 +

1

u3
H

(N)
2 + . . .
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We formulate the projective property of TN(u) in scalar symmetric and skewsymmetric
case

Proposition 4.1 (i) In scalar symmetric case we have the following identity of operators
from Λ̃N

+ [u−1]→ Λ̃N−1
+ [u−1] :

ω+
NTN(u) =

u+ 1

u
TN−1(u+ 1)ω+

N ;

(ii) In scalar skewsymmetric case the following identity of operators from Λ̃N
− [u−1] →

Λ̃N−1
− [u−1] holds:

ω−NTN(u) =
u+ 1

u
TN−1(u− α− 1)ω−N .

Iterating the relations from Proposition 4.1 we see, that the renormalized transfer matrices
T̃N(u) and T̄N(u) in symmetric and skewsymmetric case

T̃N(u) =
u−N
u

TN(u−N) T̄N(u) = TN(u+ γN)
N∏
k=1

u+ kγ

u+ kγ + 1
,

are compatible with projection maps ω+
N and ω−N , respectively

ω+
N T̃N(u) = T̃N−1(u)ω+

N ω−N T̄N(u) = T̄N−1(u)ω−N

Here γ = α + 1. The coefficients of renormalized transfer matrices can be chosen as a
projective system of Hamiltonians of CS system.

The statement of Proposition 4.1 can be generalized to skewsymmetric spin case.
Regard an element f of Λs,N

− as (Cs)⊗N valued function f = f(x1, x2, . . . , xN). We define

a linear map ωN : Λs,N
− → Λs,N−s

− by the formula

ω−N(f) = (x1 · · ·xN−s)−1
(
1⊗(N−s) ⊗ e⊥1 ⊗ e⊥2 · · · ⊗ e⊥s

)
f(x1, . . . , xN−s, 0, . . . 0)

and formulate the following

Proposition 4.2 The following identities of operators from Cs ⊗ Λ̃s,Ns
− [u−1] → Cs ⊗

Λ̃
s,(N−1)s
− [u−1] holds:

ω−NsTNs(u) =
u+ 1

u
T(N−1)s(u− α− s)ω−Ns.

Set γ = α + s and

T̄Ns(u) = TNs(u+ γN)
N∏
k=1

u+ kγ

u+ kγ + 1
,

treated as asymptotical series in u−1. Then T̄Ns(u) satisfy compatibility conditions

ω−NsT̄Ns(u) = T̄(N−1)sω
−
Ns

and form a projective system of transfer matrices.
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5. Bosonic limit of spin Calogero-Sutherland system.
In this section we observe the results of [27] using slightly different language.

Let Hs be the Heisenberg algebra with generators ac,k, c = 1, . . . , s, k = 0, 1, ... and
(qc)

±1, which satisfy the relations

[ac,k, ad,l] = kδcdδk,−l, qcad,k = (ad,k + δcdδk0)qc.

Let Λ̂(s) be a representation of the Heisenberg algebra Hs with the vacuum vector |0〉+
such that

ac,k|0〉+ = 0, c = 1, ..., s, k > 0, qc|0〉+ = |0〉+, c = 1, ..., s.

Denote by +〈0| the vector of the dual space, which satisfies the relations

+〈0|ac,k = 0, c = 1, ..., s, k ≤ 0.

For any |v〉+ ∈ Λ̂(s) consider the matrix element π̃N(|v〉+) ∈ V ⊗N

π̃N(|v〉+) = +〈0|Φ(zN)Φ(zN−1) · · ·Φ(z1)|v〉+,

where

Φc(z) = exp

(∑
n>0

ac,n
n
zn

)
qc : Λ̂(s) → Λ̂(s) ⊗ C[z], c = 1, ..., s,

Φ(z) =
∑
c

Φc(z)⊗ ec : Λ̂(s) → Λ̂(s) ⊗ V,

are the vertex operators and by Φ(zk) we shortly denote Φ(zk) ⊗ 1⊗k−1. We show that
π̃N(|v〉+) ∈ Λs,N

+ is symmetric invariant.

Our goal is to pull back the Yangian action (0.8) in Λs,N
+ through the map π̃N . We

use the similar procedure as in scalar case and decompose the application of each Yangian
generator (0.8) to a vector |w〉+ ∈ Λs,N

+ into several steps. First we present the symmetric

tensor |w〉+ ∈ Λs,N
+ as an element of (C[xi]⊗ Cs) ⊗ Λs,N−1

+ for each tensor component,
producing an equivariant family of vectors, then we apply the power of Heckman operator
D(N)
i to the i-th vector of this equivariant family and get another equivariant family. The

last step is the symmetrization EN(u) — the sum of all members of the equivariant family:

EN(u) =
N∑
j=1

σ1j(u),

where σij = KijPij is the permutation of i-th and j-th tensor factors.

For each F (z) ∈ Λ̂(s) ⊗ V define the element S(F (z)) ∈ Λ̂(s) as the formal integral

S(F (z)) =
1

2πi

∮
dz

z
Φ∗(z)F (z),

which counts zero term of the Laurent series. Here

Φ∗(z) =
∑
c

ϕ−c (z) · Φ−1
c (z)⊗ e⊥c : Λ̂(s) ⊗ V → Λ̂(s) ⊗ C[z],
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the series ϕ−c (z) =
∑

n≤0 ac,nz
n and the operator e⊥c : Cs → C is given by the relation

e⊥c (eb) = δbc. The key point of the construction is the following lemma which establishes
the map S as the pullback of the finite symmetrization:

Lemma 5.2 For each F (z) ∈ Λ̂(s)⊗V and any natural N we have the equality of elements
of Λs,N

+ :

EN(π̃N−1 ⊗ 1)(F (z)) = π̃NS(F (z)).

Let D̃ : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V be the linear map, such that for any F (z) ∈ Λ̂(s) ⊗ V

D̃F (1)(z) = αz
d

dz
F (1)(z) +

z

2πi

∮
dξ

ξ2(1− z
ξ
)
Φ∗(2)(ξ)Φ(2)(z)F (1)(ξ)

Here the upper index (i), i = 1, 2 indicates in which tensor copy of Cs the corresponding
vector lives or an operator acts. We state that the operator D̃ is the pullback of the
equivariant family of Heckman operators D(N)

i .

Proposition 5.1 For any F (z) ∈ Λ̂(s) ⊗ V we have

(π̃N−1 ⊗ 1) D̃(F (x1)) = D(N)
1 (π̃N−1 ⊗ 1)F (x1)

Let Eab ∈ EndCs, be the matrix unit, Eab(ec) = δbcea. Denote by Eab, the operator
1⊗ 1⊗ Eab : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V :

EabF (z) = Fb(z)⊗ ea.

Summarazing the statements above we get the following result [27]

Theorem 5.1 The operator Tab,n given by

Tab,n =
(−1)n

2πi

∮
dz

z
Φ∗(z)EabD̃nΦ(z)

is the pullback of the Yangian generator tab,n, see (0.8):

π̃NTab,n = tab,nπ̃N for any N ∈ N.

Using this construction we derive the explicit expressions for the first Hamiltonians of CS
system.

In the next section we investigate the classical limit of the system. We introduce the

operator H cl which is the classical limit of the second Hamiltonian, the rule between
the quantum commutator and Poisson bracket is β−1[ , ]→ { , }. In Proposition 5.3 we

present the equations of motion determined by H cl:

dφa(z)

dt
= {φa(z),H cl}.
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Here and further φa(z) and Va(z) are the classical analogues of field ϕa(z) and vertex
operator Φa(z) respectively.

The quantum system is integrable: it has an infinite number of integrals of motion
that can be obtained from the q-determinant of the Yangian generator function Tab(u). It
is natural to assume that the classical system is integrable as well. In particular, it should
admit a Lax pair presentation. Consider the operators L and M acting on the analytic
function f(z):

Lf = z
∂

∂z
f(z) +

∑
a

Va(z)
(
φ−a (z)V−1

a (z)f(z)
)+
,

Mf =

(
z
∂

∂z

)2

f(z) + 2
∑
b

(
φ+
b (z)φ−b (z)

)+
f(z) + 2

∑
b

Vb(z)z
∂

∂z

(
φ−b (z)V−1

b (z)f(z)
)+
.

Proposition 5.4 The operators L and M represent a Lax pair of the classical system:

dL

dt
= [M,L].

6. Fermionic limit for spin system.
The fermionic limit of spin CS system was studied by D. Uglov. Here we suggest and
develop another approach, which leads to the limiting integrable system closely related
to [57], but realized by free fermionic fields, we mainly follow [26].

We start from the fermionic Fock space F s, which is the representation of algebra
Hs
− of s free fermion fields. We denote by Ψc(z) and Ψ∗c(z) be the following generating

functions of elements of Hs
−:

Ψc(z) =
∑
n∈Z

ψcnz
n, Ψ∗c(z) =

∑
n∈Z

ψ∗cnz
n−1.

For any |v〉 ∈ F s we define a matrix coefficients by the following formula

πN (|v〉) = 〈0|Ψ(zN)Ψ(z2) · · ·Ψ(z1)|v〉, |v〉 ∈ F s

where Ψ(z) =
∑s

c=1 Ψc(z) ⊗ ec and ec ∈ Cs are again basic vectors of Cs. The matrix

element πN (|v〉) belongs to the space Λs,N
− , which is the phase space of finite spin CS

system. Then we systematically construct the pullback with respect to the maps πN of
all operation required for the construction of the Yangian action on the finite-dimensional
spin CS system.

The crucial point of the construction is the operator which the pullback of total finite
antisymetrization AN : V ⊗ Λs,N−1

− → Λs,N
− , given by

AN(u) = u−
N∑
j=2

σ1j(u).

For each F (z) ∈ Hs
−(z)⊗ Cs define the element A(F (z)) ∈ Hs

− as the integral

A(F (z)) =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
.
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The following lemma establishes the map A as the pullback of the finite antisymmetriza-
tion:

Lemma 6.2 For each F (z) ∈ Hs
−(z) ⊗ Cs satisfying the conditions (6.25) and (6.26),

any |v〉 ∈ F s and any natural N we have the equality of elements of Λs,N
− :

AN πN−1,1(F (z)⊗ |v〉) = πNA(F (z))|v〉.

We remark that Lemma 6.2 holds only for a subspace of Hs
−(z) ⊗ Cs analogously with

the fermionic scalar case. The special conditions (6.25) and (6.26) are preservation of the
polynomial space and homogeneity. These conditions are preserved by pullbacks of Dunkl
operators, which we define further.

Define an operator D : Hs
−(z)⊗ Cs → Hs

−(z)⊗ Cs by the relation

DF (z) = αz
d

dz
F (z)+

z

(2πi)2

∫
w	0
|w|<|z|

dw

∫
u	w

du Ψ∗(2)(u)
Ψ(2)(w)F (1)(z)−Ψ(2)(z)F (1)(w)

(u− w)(z − w)
.

By means of Lemma 6.2 we now can identify the operator D as a pullback of the equiv-
ariant family of Heckman operators D(N)

i acting in the space of partially antisymmetric
tensors

Proposition 6.1 For any F (z) ∈ Hs
−(z)⊗Cs satisfying the condition (6.25) and (6.26),

|v〉 ∈ F s and N ∈ N we have the equality

πN−1,1(DF (x1)⊗ |v〉) = D(N)
1 πN−1,1(F (x1)⊗ |v〉).

As in bosonic spin case we introduce operators :

Tab,n = AEabDnΨ(z) =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)EabDnΨ(z)

u− z
.

Summarizing the statements above we establish the operator Tab,n as the pullback of the

Yangian generator tab,n in Λs,N
− .

Proposition 6.2 For any |v〉 ∈ F s and N ∈ N we have the equality

πN(Tab,n|v〉) = tab,nπN |v〉.

We note the importance of the polynomial property of the total zero mode in the con-
structed Yangian action on the Fock space F s, which we prove by using projective prop-
erties of the Yangian action in the phase spaces of CS models, it allows to formulate the
following

Theorem 6.1 The operators Tab,n satisfy Yangian relations.

In particular, the coefficients of the quantum determinant q det T(u) form a commutative
family which can be regarded as the limits of the higher Hamiltonians of CS system.
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1 Bosonic limit of Calogero-Sutherland system

1.1 Integrability of quantum Calogero-Sutherland model

Consider the quantum Calogero-Sutherland model of N particles on the circle [9, 23]. Its
Hamiltonian is

HCS = −
N∑
i=1

(
∂

∂qi

)2

+ 2
(π
L

)2
N∑
i<j

β(β −Kij)

sin2
(
π
L

(qi − qj)
) , (1.1)

where Kij is the coordinate exchange operator of particles i and j.1 After conjugating by
the function

∏
i<j|sin( π

L
(qi − qj))|β which represents the vacuum state with eigenenergy

E0 = (πβ/L)2N(N2− 1)/3, and passing to the exponential variables xi = e
2πiqi
L we arrive

after simple rescaling to the effective Hamiltonian

Heff =
N∑
i=1

(
xi

∂

∂xi

)2

+ β
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
− 2β

∑
i<j

xixj

(xi − xj)2 (1−Kij) .

(1.2)
We consider the symmetric and skewsymmetric wave functions of the Hamiltonian (1.2):

φ(x1, . . . , xi, . . . , xj, . . . , xN) = ±φ(x1, . . . , xj, . . . , xi, . . . , xN),

then the eigenfunctions of the Hamiltonian HCS∏
i<j

|sin(qi − qj)|βφ(e2πiq1 , . . . , e2πiqN )

are also (skew)symmetric by the variables {qi} (except for the vacuum state in skewsym-
metric case). Denote by H̃ and H̄ the restriction of the Hamiltonian (1.2) on the space
of symmetric and skewsymmetric functions, respectively, then

H̃ =
N∑
i=1

(
xi

∂

∂xi

)2

+ β
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
; (1.3)

H̄ =
N∑
i=1

(
xi

∂

∂xi

)2

+ β
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
− 4β

∑
i<j

xixj

(xi − xj)2 . (1.4)

Further we use the Heckman–Dunkl operators D
(N)
i in the form suggested by Poly-

chronakos [46, 15]:

D
(N)
i = xi

∂

∂xi
+ β

∑
j 6=i

xi
xi − xj

(1−Kij) . (1.5)

These operators satisfy the relations

KijD
(N)
i = D

(N)
j Kij,

[D
(N)
i , D

(N)
j ] = β(D

(N)
j −D(N)

i )Kij,

1In literature one can find the Hamiltonian (1.1) in the form, where instead the exchange operator Kij

presents identity operator. In other notations it corresponds to the case of symmetric wave functions.

21



which coincide with the relations of the degenerate affine Hecke algebra after the renor-
malization D

(N)
i → 1

β
D

(N)
i . We introduce the operators

H̃
(N)
k = Res+

(∑
i

(
D

(N)
i

)k)
, (1.6)

H̄
(N)
k = Res−

(∑
i

(
D

(N)
i

)k)
, (1.7)

where Res± means the restriction on the space of symmetric and antisymmetric functions,
respectively. As an example the first operators has the form

H̃
(N)
0 = H̄

(N)
0 = N ; H̃

(N)
1 =

N∑
i=1

(
xi

∂

∂xi

)
;

H̄
(N)
1 =

N∑
i=1

(
xi

∂

∂xi

)
+ βN(N − 1).

Proposition 1.1 [17] i) The operators (1.6) commute.
ii) The operators (1.7) commute.

Due to the Theorem 1.1 operators (1.6) and (1.7) can be chosen as the integrals of
motion of the quantum Calogero-Sutherland model. In symmetric case the Hamiltonian
(1.3) is given by

H̃ = H̃
(N)
2 ,

the expression of the Hamiltonian (1.4) in terms of H̄
(N)
k is given by the formula:

H̄ = H̄
(N)
2 − 2β(N − 1)H̄

(N)
1 + β2N(N − 1)2. (1.8)

1.2 Review of the scalar finite system

In this section we deal with the scalar CS system with N bosonic particles and review
recent results [39, 52] mainly following the approach of [39]. The main idea is to regard
the equivariant Heckman-Dunkl operators as a quantum L-operator acting on the space
of polynomial functions of one variable with coefficients being symmetric polynomials of
the remaining N − 1 variables.

Due to the previous section the higher Hamiltonians of the system are expressed by
means of Dunkl operators and can be chosen as any symmetric functions of D

(N)
i , as an

example power sums. Clearly, symmetric functions of D
(N)
i preserve the ring of symmetric

polynomials ΛN
+ = C[x1, . . . , xN ]SN . This algebra is generated by the Newton polynomials

p
(N)
k = xk1 + · · · + xkN , k ∈ 0, 1, . . . N (sometimes we omit the upper index N and simply

write pk). The Dunkl operator D
(N)
i itself preserves the symmetry involving all variables

other than xi and therefore it acts on the space ΛN,i
+ of functions symmetric in all variables

except xi:

ΛN,i
+ w C[xi]⊗ C[x1, . . . xi−1, xi+1, . . . xN ]SN−1 . (1.9)
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Denote by D̃
(N)
i the restriction of the action of Dunkl operators on space ΛN,i

+ . Then the
higher Hamiltonians (1.6) can be simply rewritten as:

H̃
(N)
k =

(∑
i

(
D̃

(N)
i

)k)
. (1.10)

The action of Dunkl operator on symmetric function in N variables provides a family of
N equivariant functions: fi(x1, . . . ;xi; . . . xN) ∈ ΛN,i

+ that

Kijfi = fj.

For any f(x1, . . . ;xi; . . . xN) ∈ ΛN,i
+ denote by (EN f) ∈ ΛN

+ the following sum

EN f =
N∑
j=1

Kijf.

For an equivariant family of functions it can be written as:

(EN f)(x1, ..., xN) = f1(x1;x2, ..., xN)+f2(x1;x2;x3, ..., xN) + . . .

+fN(x1, ..., xN−1;xN).

An operator EN : ΛN,i
+ → ΛN

+ coincides up to a scalar factor with total symmetrization.
The action of the higher Hamiltonian (1.10) can be obtained by the following proce-

dure: we start with symmetric fucntion f(x1, . . . , xN) ∈ ΛN
+ and construct an equivariant

family of its N copies using the natural embedding ι̃N,i : ΛN
+ → ΛN,i

+ :

fi(x1, . . . ;xi; . . . xN) = ι̃N,if(x1, . . . , xN) ∈ ΛN,i
+ .

Then the action of Dunkl operator can be rewritten as

D̃
(N)
i fi = xi

∂

∂xi
fi + β

∑
j 6=i

xj
xi − xj

(fi − fj).

We act the k-th power of Dunkl operator (D̃
(N)
i )k and obtain the equivariant family:(

(D̃
(N)
1 )kf(x1, . . . , xN), . . . , (D̃

(N)
N )kf(x1, . . . , xN)

)
,

then we symmetrize the answer using operator EN . This procedure can be illustrated by
the following matrix formula:

H̃k =
(
1, 1, . . .

)

x1

∂
∂x1

+ β

N∑
i=2

x1

x1 − xi
−β x1

x1−x2 . . .

−β x2
x2−x1 x2

∂
∂x2

+ β
∑
i 6=2

x2

x2 − xi
...

... . . .
. . .



k

f1

f2
...
fN
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Our next aim to reformulate action of operators ι̃N,i,EN , D̃
(N)
i in terms of Newton

sums p
(N)
k . In the following we use the notation

V+(z) = exp

(∑
n>0

zn
∂

∂pn

)
(1.11)

for the linear map, which changes each occurrence of a Newton sum p
(N)
k by p

(N−1)
k + zk.

Let F = F ({p(N)
k }) ∈ ΛN

+ be a symmetric function in N variables written in terms of

p
(N)
k .

Lemma 1.1 The natural embedding ι̃N,i : ΛN
+ → ΛN,i

+ is given by

ι̃N,i(F ) = V+(xi)F. (1.12)

Here V+(xi)F is a function of xi and {pk} depending on (N − 1) variables.
Proof. The embedding ι̃N,i can be regarded as the presentation of a symmetric function
F by a polynomial in xi with coefficients being symmetric functions of the remaining
variables:

F ({pk}) = F0(x1, . . . xi−1, xi+1, . . . xN) + F1(x1, . . . xi−1, xi+1, . . . xN)xi+

F2(x1, . . . xi−1, xi+1, . . . xN)x2
i + . . . .

This expansion can be obtained by means of a substitution

pNk → pN−1
k + xki (1.13)

which in its turn can be obtained by applying the vertex operator (1.11) due to the Taylor
formula

f(z + t) = exp

(
t
∂

∂z

)
f(z) = f(z) + f ′(z)t+

1

2
f ′′(z)t2 + . . .

which yields a finite sum for polynomials. Observe that the formula (1.12) is correct for
any expression of the symmetric function in terms of Newton polynomials pk irrespective
of their dependencies. Indeed, since both sides of (1.13) are equal as functions in
x1, x2, . . . , xN , the same is true for both sides of (1.12). �

Let ϕ±(ξ) be the following power series in ξ±1:

ϕ+(ξ) =
∞∑
n=1

ξn
n∂

∂pn
, ϕ−(ξ) =

∞∑
n=0

pn
ξn
, (1.14)

where p0 = N . We also use the notation

V ′+(z) = exp

(∑
n>0

−zn ∂

∂pn

)
. (1.15)

By definition the operator V ′+(z) changes each occurrence of the formal variable pN−1
k by

the difference pNk −zk. The operator V ′+(xi) maps the space ΛN,i
+ to ΛN

+ ⊗C[xi]. Note that

V ′+(z)V+(z)F = F ∀ F ∈ ΛN
+ . (1.16)
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Lemma 1.2 Let F (xi; {pn}) ∈ ΛN,i
+ . Then

EN F ({pn}) =

∮
dξ

ξ
ϕ−(ξ)

(
V ′+(ξ)F

)
(ξ; {pn}). (1.17)

Here on the RHS the function F (ξ; {pn}) depends on symmetric functions of (N − 1)
variables, while EN F ({pn}) on the LHS and V ′+(ξ)F on the RHS both depend on sym-
metric functions on N variables. The integral on the right hand side counts the residue
at infinity: ∮

f(ξ)dξ = f−1 for f(ξ) =
∑
i

fiξ
i.

Proof. Due to ∮
dξ

ξ
ϕ−(ξ)ξn = pn

the formal integral on the RHS (1.17) changes each ξn in V ′+(ξ)F to pn, which coincides
with the action of operator EN . �

Lemma 1.3 The action of the Dunkl operator D̃
(N)
i on functions F (xi, {pn}) ∈ ΛN,i

+ can
be expressed by the following formula:

D̃
(N)
i (F (xi, {pn})) = xi

∂

∂xi
F (xi, {pn})+

+ βxi

∮
dξ

ξ2

ϕ−(ξ)− 1

1− xi
ξ

(
V ′+(ξ)V+(xi)F

)
(ξ, {pn}).

(1.18)

Proof. In detail, the Dunkl operator D̃
(N)
i transforms the space ΛN,i

+ of functions with
chosen variable xi into itself:

D̃
(N)
i (F (xi, {pn})) = xi

∂

∂xi
F (xi, {pn}) + β

∑
j 6=i

xi
xi − xj

(1−Kij)F (xi, {pn}) =

xi
∂

∂xi
F (xi, {pn}) + β

∑
j 6=i

xi
xi − xj

((V+(xj)F ) (xi, {pn})− (V+(xi)F ) (xj, {pn}))

In each occurrence of F (xi; {pn}) we regard {pn} as symmetric functions of (N − 1)
variables, while in (V+(xj)F ) (xi, {pn}) {pn} depend on (N − 2) variables (all except xi
and xj). Using the absence of singularities on the diagonals xi = xj for Dunkl operators,
we first present each fraction in the series as a function of xi/xj, then replace them by
Cauchy integrals, to get:

D̃
(N)
i (F (xi,{pn})) = xi

∂

∂xi
F (xi,{pn})

− β
∑
j 6=i

xi
xj

1− xi
xj

((V+(xj)F ) (xi, {pn})− (V+(xi)F ) (xj, {pn}))

= xi
∂

∂xi
F (xi, {pn})

+ βxi

∮
dξ

ξ2

ϕ−(ξ)− 1

1− xi
ξ

(
V ′+(ξ)V+(xi)F

)
(ξ, {pn})

− βxi
∮
dξ

ξ2

ϕ−(ξ)− 1

1− xi
ξ

(
V ′+(ξ)V+(ξ)F

)
(xi, {pn}).
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In the last summand the vertex operators cancel each other due to (1.16), and the cor-
responding integral vanishes since it contains ξ only in negative powers. We then obtain
formula (1.18). �

1.3 Bosonic limit in the extended ring of symmetric functions
Λ̂

The ring Λ of symmetric functions with infinite number of variables is defined as the
projective limit Λ = lim←−ΛN

+ with respect to the projection ΛN+1
+ → ΛN

+ [30, II.2]:

f (x1, x2, . . . , xN , xN+1)→ f (x1, x2, . . . , xN , 0) .

An element of Λ can be represented by a sequence of symmetric functions:

f1(x1), f2(x1, x2), . . . , fN(x1, x2, . . . , xN), . . . , (1.19)

that stabilizes fN+1 (x1, x2, . . . , xN , 0) = fN (x1, x2, . . . , xN).

The ring ΛN
+ is generated by Newton power sums p

(N)
k (x1, x2, . . . , xN) =

∑N
i=1 x

k
i

(k 6 N). The Newton polynomials satisfy the stability condition (1.19) and thus correctly
define an element pk ∈ Λ that can be presented as a series pk =

∑
i x

k
i . The elements pk,

k = 0, 1, . . . freely generate the ring Λ.
We add to Λ the formal variable p0 and denote by Λ̂ = C[p0, p1, . . .] the ring of

symmetric functions extended by the free variable p0 . The canonical projection π̃N :
Λ̂→ ΛN

+ can be desribed by the relation:

π̃N : Λ̂→ ΛN
+ : pk → p

(N)
k =

N∑
i=1

xki , p0 → N. (1.20)

The space Λ̂ is an irreducible representation of the Heisenberg algebra H, generated

by the elements pn and
∂

∂pn
and can be regarded as a polynomial version of the Fock

space. It contains the vacuum vector |0〉+, such that

∂

∂pn
|0〉+ = 0, n = 0, 1, . . . .

The dual vacuum vector +〈0| satisfies the condition

+〈0|pn = 0, n = 0, 1, . . . .

Introduce an operator Φ(z) : Λ̂⊗ C[z]→ Λ̂⊗ C[z]

Φ(z) = exp

(∑
n>0

zn
∂

∂pn

)
. (1.21)

In these terms the projection π̃N : Λ̂→ ΛN
+ can be defined for an element |v〉+ ∈ Λ̂ as the

following matrix element:

π̃N |v〉+ = +〈0|Φ(xN) . . .Φ(x2)Φ(x1)|v〉+. (1.22)
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Indeed, for any |v〉+ = F (p0, p1, p2, . . . ) the operator Φ(xi) shifts each pn by xni , so we
have

Φ(xN) . . .Φ(x2)Φ(x1)|v〉+ = F (p0 +N, p1 +
N∑
i=1

xi, p2 +
N∑
i=1

x2
i , . . . ).

The left vacuum +〈0| ”kills” each presence of pn, so we obtain

π̃NF (p0, p1, p2, . . . ) = F (N,
N∑
i=1

xi,

N∑
i=1

x2
i , . . . ),

which coincides with the definition (1.20).

Lemma 1.4 We have the following equality of linear maps Λ̂→ ΛN,i
+ :

π̃N−1Φ(xi) = ι̃N,iπ̃N . (1.23)

Proof. Applying both sides of of (1.23) to an element |v〉+ ∈ Λ̂ we get the tautology:
both sides are equal to

+〈0|Φ(xN) . . .Φ(x2)Φ(x1)|v〉+,
since Φ(xi) and Φ(xj) commute. �

Introduce an operator Φ∗(z) : Λ̂⊗ C[z]→ Λ̂⊗ C[z]:

Φ∗(z) = ϕ−(z) exp

(
−
∑
n>0

zn
∂

∂pn

)
, (1.24)

where ϕ−(z) is defined in (1.14). Define a linear map S : Λ̂⊗ C[z]→ Λ̂ as

SF ({pn}) =

∮
dξ

ξ
Φ∗(ξ)F (ξ, {pn}).

The following lemma establishes the map S as the pullback of the finite symmetrization.

Lemma 1.5 For each F (z, {pn}) ∈ C[z] ⊗ Λ̂ and any natural N we have the equality of
elements of ΛN

+ :
EN π̃N−1F (z, {pn}) = π̃NS(F (z, {pn}). (1.25)

Proof. The RHS of (1.25) equals

+〈0|Φ(xN) . . .Φ(x2)Φ(x1)

∮
dξ

ξ
Φ∗(ξ)F (ξ, p0, p1, p2, . . . ) =

+〈0|Φ(xN) . . .Φ(x2)Φ(x1)

∮
dξ

ξ

(
N +

∑
k

pk
ξk

)
V ′(ξ)F (ξ, p0 − 1, p1, p2, . . . ).

The last is equal to LHS of (1.25) due to (1.17). Here we use a difference between the
definitions (1.15),(1.14) and (1.24) for ϕ−(x)V ′+(x) and Φ∗(z) in the zero mode p0 and
∂
∂p0

.
�

Define an operator D̃ : Λ̂⊗ C[z]→ Λ̂⊗ C[z]

D̃(F (z, {pn})) = z
∂

∂z
F (z, {pn}) + βz

∮
dξ

ξ2

1

1− z
ξ

Φ∗(ξ)Φ(z)F (ξ, {pn}). (1.26)

The main result of this section we formulate as the following
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Theorem 1.1 The operator D̃ (1.26) is a limit of Dunkl operators D̃
(N)
i .

In other words, the operator D̃ is a pullback of D̃
(N)
i under the map π̃N , defined in (1.22).

We illustrate it by the following commutative diagram:

Λ̂⊗ C[z] ΛN,i
+

Λ̂⊗ C[z] ΛN,i
+

-
π̃N−1

?
D̃

?
D̃

(N)
i

-
π̃N−1

(1.27)

The commutativity of (1.27) follows from Lemma 1.5 and formulas (1.18) and (1.26).
Comment. This result was formulated in other terms by Nazarov and Sklyanin, Sergeev
and Veselov, see [39] and [52].

Theorem 1.1 implies the following

Proposition 1.2 The operators H̃k = SD̃k ι̃ : Λ̂→ Λ̂,

H̃k : Λ̂
ι̃−→ Λ̂⊗ C[z]

Dk−→ Λ̂⊗ C[z]
S−→ Λ̂, (1.28)

generate a commutative family of Hamiltonians of the limiting system [39, 52].

Proof. The operators H̃k are the pullbacks of H̃
(N)
k under the map π̃N due to Theorem

1.1 , Lemma 1.5 and (1.23). Due to the property

∩N∈N Ker π̃N = 0 (1.29)

of the ring of symmetric functions the commutativity of H̃
(N)
k for N ∈ N implies the

commutativity of H̃k. �

As an example let us calculate the first Hamiltonians H̃1 and H̃2:

H̃1 =

∮
dξ

ξ
Φ∗(ξ)

(
ξ
∂

∂ξ

)
Φ(ξ) =

∮
dξ

ξ
ϕ−(ξ)ϕ+(ξ) =

∑
n>0

npn
∂

∂pn
(1.30)

H̃2 =

∮
dξ

ξ
Φ∗(ξ)

(
ξ
∂

∂ξ

)2

Φ(ξ) + +β

∮
η<ξ

dξdη

ξ2
Φ∗(η)

1

1− η
ξ

Φ∗(ξ)Φ(η)

(
ξ
∂

∂ξ

)
Φ(ξ) =

=

∮
dξ

ξ
ϕ−(ξ)

(
ϕ+(ξ)ϕ+(ξ) + ξ

∂

∂ξ
ϕ+(ξ)

)
+β

∮
η<ξ

dξdη

ξ2
ϕ−(η)

(
ϕ−(ξ)

1− η
ξ

− 1

(1− η
ξ
)2

)
ϕ+(ξ).

We have taken the second derivative in the first integral and used the commutator relations

[ϕ−(ξ),Φ(η)] = − Φ(η)

(1− η
ξ
)

in the second. Thus

H̃2 =

∮
dξ

ξ

(
ϕ−(ξ)ϕ+(ξ)ϕ+(ξ) + β(ϕ−(ξ)− p0)(ϕ−(ξ)ϕ+(ξ)) + (1− β)ϕ−(ξ)ξ

∂

∂ξ
ϕ+(ξ)

)
(1.31)

=
∑

k>0,n>0

knpk+n
∂

∂pk

∂

∂pn
+ β

∑
k>0,n>0

(k + n)pkpn
∂

∂pk+n

+ (1− β)
∑
n>0

n2pn
∂

∂pn
.

If we put p0 = 0 and β = 1 the expression for H̃2 coincides with the so called “cut-and-
join” operator which has applications in the combinatorics of Hurwitz numbers.
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1.4 Classical limit and the Benjamin-Ono hierarchy

The Benjamin-Ono [8, 43] equation is nonlinear partial integro-differential equation ap-
peared in hydrodynamics and describes one-dimensional internal waves in deep water:

ut + 2uuz + γH(uzz) = 0, (1.32)

where

H(u(z)) =
1

π
p.v.

∫
dy

u(y)

y − z
= i(u+(z)− u−(z))

is the Hilbert transform. It is completely integrable [2, 24, 16] and has an infinite number
of conserved integrals which are in involution with respect to Poisson bracket:

{u(x), u(y)} = δ′(x− y).

The integrals of motion can be constructed recurrently using Backland (Miura) transfor-
mation [34].

The equation (1.32) can be rewritten in the form

ut = {u(z), I},

where the Hamiltonian I is defined by

I =

∫ (
1

3
u3(y) +

γ

2

(
y
∂

∂y
u(y)

)
H(u(y))

)
dy. (1.33)

Introduce the following notation

φ+(z) = ϕ+(z) =
∑
n>0

nzn
∂

∂pn
φ−(z) = β(ϕ−(z)− p0) =

∑
n>0

βpn
zn

.

The commutation relations

[n
∂

∂pn
, βpk] = nβδn,k

read
[φ(x), φ(y)] = βδ′(x/y).

Consider a difference H̃2 − p0H̃1 and multiply it by β, then using (1.30) and (1.31) we
obtain

H̃ = β
(
H̃2 − p0H̃1

)
=

1

3

∮
dξ

ξ
: φ3(ξ) : +

1− β
2

: φ(ξ)ξ
∂

∂ξ

(
φ+(ξ)− φ−(ξ)

)
:, (1.34)

where : : means bosonic normal ordering: the operators pn are moved to the left and the
operators ∂

∂pn
are moved to the right. This leads to the following

Proposition 1.3 The operator (1.33) with γ = 1 is the classical limit of the Hamilto-
nian (1.34) (β → 0). The rule between the quantum commutator and Poisson bracket is
β−1[ , ]→ { }, see [39].

Due to Proposition 1.3 one called the hierarchy (1.28) the quantum Benjamin-Ono hier-
archy.
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2 Fermionic limit

2.1 Polynomial phase space. Review of the finite system.

1. We regard the CS system ofN fermionic particles with polynomial wave functions using
the Heckman-Dunkl operators. The corresponding Heckman–Dunkl operators D

(N)
i :

C[x1, . . . , xN ] → C[x1, . . . , xN ] are defined by the relation (1.5). Symmetric polynomials

in D
(N)
i preserve the space of symmetric ΛN

+ and antisymmetric polynomials ΛN
− . Denote

by αN : ΛN
+ → ΛN

− the canonical isomorphism

αN : f(x1, . . . xN)→ f̄(x1, . . . xN) = f(x1, . . . xN)∆(x1, . . . , xN), (2.1)

where
∆(x1, . . . , xN) = det

i,j=1...N
(xN−ji ) =

∏
i<j

(xi − xj)

is the Vandermonde determinant.
The space ΛN

+ is generated by the Newton polynomials p
(N)
k = xk1 + · · · + xkN , k =

1, . . . N . Due to (2.1) any antisymmetric polynomial can be written by the following
formula

f̄(x1 . . . xN) = ∆(x1, . . . , xN)f({p(N)
k }), k = 1, 2, . . .

where f is a polynomial in pk. Here and further we denote by f(x1, . . . xN) or f({p(N)
k }

a symmetric function and by f̄(x1, . . . xN) the corresponding antisymmetric function fol-
lowing (2.1). For an operator B acting on the symmetric functions we denote by B̄
the corresponding operator acting on the antisymmetric functions so that the relation
B̄f̄(x1, . . . xN) = B f(x1, . . . xN) holds.

The Dunkl operator D
(N)
i preserves the antisymmetry involving all variables other

than xi. Denote by D̄
(N)
i the restriction of D

(N)
i to the space of functions

f̄(xi;x1, . . . , xN) ∈ ΛN,i
− (2.2)

antisymmetric in all variables other than xi. Due to (2.1) the LHS of (2.2) can be presented
as

f̄(xi;x1, . . . , xN) = ∆(x1, . . . xi−1, xi+1, . . . , xN)f(xi; {pk}),
where f is a polynomial in xi and in pk, which depend on N − 1 variables.

2. In the following we use the notations

V+(z) = exp

(∑
n>0

zn
∂

∂pn

)
, V−(z) = zN exp

(
−
∑
n>0

pn
nzn

)
, (2.3)

where N is the number of variables in pk. The operator V+(z) we introduced earlier
in (1.11). More precisely, the operator V+(z) maps a polynomial expression in {pk}
and in z into the same expression changing each occurrence of a Newton sum p

(N)
k by

p
(N−1)
k + zk due to the Taylor formula. The operator V−(z) does not change the number

of variables in pk = p
(N)
k and can be equivalently written as an operator of multiplication

by
∏
i

(z − xi) ∈ C[z]⊗ ΛN
+ :

V−(z) = zN
N∏
i=1

exp

(
−
∑
n>0

xni
nzn

)
= zN

N∏
i=1

exp
(

ln
(

1− xi
z

))
=

N∏
i=1

(z − xi). (2.4)
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Note that further we mostly use the composition of operators V−(z)V+(z), which maps
the space Λ(+)[z, x2, . . . , xN ] to C[z]⊗ Λ(+)[x2, . . . , xN ]. In this composition the operator
V−(z) has the form V−(z) = zN−1 exp

(
−
∑

n>0
pn
nzn

)
, where pk depend on N − 1 variables.

3. Let f({pk}) be a symmetric polynomial in N variables and

f̄(x1 . . . xN) = ∆(x1, . . . , xN)f({pk})

the corresponding antisymmetric polynomial. Denote by

ῑN,i : ΛN
− :→ ΛN,i

−

the natural embedding representing any antisymmetric polynomial as a polynomial in xi
with coefficients in Λ(−)[x1, . . . , xi−1, xi+1, . . . xN ].

Proposition 2.1 The embedding ῑN,i is given by the following relation:

ῑN,i(f̄(x1 . . . xN)) = (−1)i+1ιN,if({pk}) = (−1)i+1V−(xi)V+(xi)f({pk}) =

= (−1)i+1∆(x1, . . . xi−1, xi+1, . . . , xN)V−(xi)V+(xi)f({pk}).
(2.5)

Here V−(xi)V+(xi)f({pk}) is a polynomial in xi and in Newton polynomials {pk} depend-
ing on (N − 1) variables.
Proof. Using the definition of ῑN,i we present the antisymmetric function f̄(x1 . . . xN) in
the following form

ῑN,i(f̄(x1 . . . xN)) =f̄0(x1, . . . xi−1, xi+1, . . . xN) + f̄1(x1, . . . xi−1, xi+1, . . . xN)xi+

+ f̄2(x1, . . . xi−1, xi+1, . . . xN)x2
i + . . . ,

(2.6)

where each f̄l(x1, . . . xi−1, xi+1, . . . xN) is an antisymmetric polynomial. The decomposi-
tion (2.6) consists of two steps. The first one is a substitution

p(N)
n → p(N−1)

n + xni

in all the functions f({pk}), which is performed by the Taylor expansion

f(z + t) = exp

(
t
∂

∂z

)
f(z) = f(z) + f ′(z)t+

1

2
f ′′(z)t2 + . . .

giving a finite sum for polynomials. The second step is a factorization of the Vandermonde
determinant:

∆(x1, . . . , xN) = ∆(x1, . . . xi−1, xi+1, . . . , xN)(−1)i+1
∏
j 6=i

(xi − xj).

Due to (2.4) the factor
∏

j 6=i(xi − xj) can be implemented in terms of pk by applying the
operator V−(xi). Thus we obtain (2.5). �

Observe that the formula (2.5) is correct for any expression of the symmetric function
in terms of Newton polynomials pk irrespective of their dependencies. Indeed,

V−(z) =
N∏
i=1

(z − xi) =
N∑
k≥0

ek(x1, . . . , xN)zk,
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where ek(x1, . . . , xN) =
∑

1≤i1<···<ik≤N

xi1xi2 . . . xik are the elementary symmetric polynomi-

als. They can be expressed by Newton sums pk(x1, . . . , xN) using Newton identities, and
these expressions do not depend on the number of variables N .

4. We also use the notations

V ′+(z) = exp

(
−
∑
n>0

zn
∂

∂pn

)
, V ′−(z) = z−N exp

(∑
n>0

pn
nzn

)
. (2.7)

By definition the operator V ′+(z) changes each occurrence of the formal variable

p
(N−1)
k (x1, . . . , xN−1) by the difference p

(N)
k (x1, . . . , xN−1, z)−zk. Thus the operator V ′+(z)

maps the space C[z]⊗Λ(+)[x1, . . . , xN−1] into itself, changing the meaning of the variables
pk. The operator V ′−(z) can be equivalently written

V ′−(z) = z−N
N∏
i=1

exp

(∑
n>0

xni
nzn

)
= z−N

N∏
i=1

exp
(
− ln

(
1− xi

z

))
= z−N

∏
i

1

(1− xi
z

)
=

= z−N
∑
k≥0

( ∑
1≤i1≤i2≤...≤ik≤N

xi1xi2 . . . xiN

)
z−k =

∑
k≥0

hk(x1, . . . , xN)z−k−N ,

where hk(x1, . . . , xN) =
∑

1≤i1≤i2≤...≤ik≤N

xi1xi2 . . . xiN are complete homogeneous symmetric

polynomials. We then can rewrite

V ′−(z) =
∑
k≥0

hk({pn})z−k−N , (2.8)

where hk({pn}) means that complete homogeneous symmetric polynomials are expressed
from the basis of the Newton polynomials. These expressions do not depend on the
number of variables N . So the operator V ′−(z) transforms the space of polynomials in

p
(N)
k and in z into Laurent series in z with coefficients being polynomials in p

(N)
k .

5. Acting on antisymmetric function in N variables the Dunkl operators produce an
equivariant family of N functions

f̄1(x1;x2, ..., xN), f̄2(x2;x1, x3, ..., xN), f̄N(xN ;x1, ..., xN−1),

where f̄i(xi;x1, . . . , xN) ∈ ΛN,i
− and Kij f̄j(xj;x1, . . . , xN) = −f̄i(xi;x1, . . . , xN).

For any polynomial f̄(xi;x1, . . . , xN) ∈ ΛN,i
− denote by ĀN f̄ ∈ ΛN

− the sum

(ĀN f̄)(x1, ..., xN) =f̄(x1;x2, ..., xN)− f̄(x2;x1, x3, ..., xN)− · · · − f̄(xN ;x1, ..., xN−1),

which we call the total antisymmetrization of the function f̄i(xi;x1, . . . , xN).
Let f(xi; {pk}) ∈ ΛN,i

+ and f̄(xi;x1, . . . , xN) be the corresponding element of the

space ΛN,i
− :

f̄(xi;x1, . . . , xN) = (−1)i+1∆(x1, . . . xi−1, xi+1, . . . , xN)f(xi; {pk}). (2.9)
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Proposition 2.2 The total antisymmetrization (ĀN f̄)(x1, ..., xN) can be described by the
relation

(ĀN f̄)(x1, ..., xN) = ∆(x1, . . . , xN)

∮
dzV ′−(z)V ′+(z)f(z; {pk}) (2.10)

Equivalently,

(AN f)({pk}) =

∮
dzV ′−(z)V ′+(z)f(z; {pk}).

Here on the RHS the function f(z; {pk}) is a polynomial in z and in pk depending
on (N − 1) variables, while V ′−(z)V ′+(z)f(z; {pk}) is a Laurent series in z with coefficients
being polynomials in pk depending on N variables. The integral on the right hand side
counts the residue at infinity:∮

f(z)dz = f−1 for f(z) =
∑
i

fiz
i.

The proof of Proposition 2.2 is based on the following statement.

Lemma 2.1 The following relation is valid

xk1∆(x2, . . . , xN)− xk2∆(x1, x3, . . . , xN) + · · ·+ (−1)N+1xkN∆(x1, . . . , xN−1) =

=

{
∆(x1, x2, . . . , xN)hk+1−N(x1, . . . , xN) for k ≥ N − 1

0 for 0 ≤ k < N − 1
,

Here hk(x1, . . . , xN) =
∑

1≤i1≤···≤ik≤N

xi1xi2 . . . xiN are complete homogeneous symmetric poly-

nomials.
Proof of Lemma 2.1. Weyl formula for Schur polynomials says

s(λ1,λ2,...,λN )(x1, x2, . . . , xN) = det
i,j=1...N

(x
λj+N−j
i )/∆(x1, . . . , xN).

In particular, for hk(x1, . . . , xN) = s(k,0,0,... )(x1, . . . , xN) we have

hk+1−N(x1, ..., xN)∆(x1, x2, . . . , xN) = det


xk1 xk2 . . . xkN
xN−2

1 xN−2
2 . . . xN−2

N
...

...
. . .

...
x1 x2 . . . xN
1 1 . . . 1

 . (2.11)

For 0 ≤ k < N−1 the determinant in RHS of (2.11) equals zero. The statement of lemma
now follows from (2.11) by the determinant expansion along the first row. See [54, $ 7].
�

Proof of Proposition 2.2. Rewrite the relation (2.9) in the form

f̄(xi;x1, . . . , xN) = (−1)i+1∆(x1, . . . xi−1, xi+1, . . . , xN)f
′
(xi; {pk}),

where f
′
(xi; {pk} = V ′+(xi)f(xi; {pk}) and pk depends on N variables. The function

f
′
(xi; {pk})) is a polynomial in xi and pk:

f
′
(xi; {pk}) =

M∑
l=0

xlif
′

l ({pk})
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therefore we can realize antisymmetrization by each power of xi independently:

(ĀN f̄)(x1, ..., xN) =
M∑
l=0

f
′

l ({pk})
(
xl1∆(x2, x3, . . . , xN) − xl2∆(x1, x3, . . . , xN) + . . .

+(−1)N+1xlN∆(x1, x2, . . . , xN−1)
)
.

Due to Lemma 2.1

(ĀN f̄)(x1, ..., xN) = ∆(x1, x2, ..., xN)
M∑

l=N−1

f
′

l ({pk})hl+1−N(x1, ..., xN). (2.12)

Due to (2.8) the formal integral∮
dzV ′−(z)zm =

{
hm+1−N({pn}) for m ≥ N − 1

0 for 0 ≤ m < N − 1
,

thus the integral
∮
dzV ′−(z)f

′
(z; {pk}) gives the RHS of (2.12) divided by ∆(x1, x2, ..., xN).

We then get (2.10). �

6. Let f(xi; {pk}) ∈ ΛN,i
+ and f̄(xi;x1, . . . , xN) be the corresponding element of the

space ΛN,i
− :

f̄(xi;x1, . . . , xN) = (−1)i+1∆(x1, . . . xi−1, xi+1, . . . , xN)f(xi; {pk}).

Define the operator
D

(N)
i : ΛN,i

+ → ΛN,i
+

by the relation

D
(N)
i f(xi, {pk}) = xi

∂

∂xi
f(xi, {pk})+

βxi

∮
dz
V ′−(z)V ′+(z)

xi − z
(V−(z)V+(z)f(xi, {pk})− V−(xi)V+(xi)f (z, {pk})) .

(2.13)

Then we formulate the following:

Proposition 2.3 The action of the Dunkl operator D̄
(N)
i in the space ΛN,i

− can be ex-
pressed by the relation:

D̄
(N)
i f̄(xi;x1, . . . , xN) = (−1)i+1D

(N)
i f(xi; {pk}) =

= (−1)i+1∆(x1, . . . xi−1, xi+1, . . . , xN)D
(N)
i f(xi; {pk}).

(2.14)

Proof. Firstly, we use the embedding 1⊗ ιN,j : ΛN,i
+ → ΛN−2,i,j

+ from the proposition 2.1:

1⊗ ιN,j : f(xi, {pn})→ V−(xj)V+(xj)f(xi, {pn}).

Then the operator xi
xi−xj ((1−Kij) can be written by the following formula

xi
xi − xj

(1−Kij)V−(xj)V+(xj)f(xi, {pn}) =

=
xi

xi − xj
((V−(xj)V+(xj)f(xi, {pn})− V−(xi)V+(xi)f (xj, {pn})) .

(2.15)
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Then we use the formula of total antisymmetrization from proposition 2.2. �

7. Here we present the formulas for antisymmetrization in a form which we will use
in the Fock space limit.

Remark 2.1 The formal integral
∮
dzV ′−(z)V ′+(z)f(z; {pk}) for the polynomial f(z; {pk})

in z can be rewritten as a complex integral

1

(2πi)2

∫
z	0

dz

∫
u	z

du
V ′−(u)V ′+(u)f(z, {pk})

u− z
. (2.16)

Remark 2.2 For f(z;xi; {pk}) with parameter xi the formal integral for antisymmetriza-
tion

∮
dzV ′−(z)V ′+(z)f(z;xi; {pk}) can be rewritten as

1

(2πi)2

∫
z	0,z�xi

dz

∫
u	z

du
V ′−(u)V ′+(u)f(z;xi; {pk})

u− z
. (2.17)

Here we choose the countour so as to avoid the singularity z = xi. This is a rule for how
to use the composition of Dunkl operators.

8. To obtain the Hamiltonians

H̄
(N)
k =

∑
i

(D̄
(N)
i )k

we replace the outer sum by antisymmetrization operator ĀN so that we get an expression
which actually does not depend on i,

H̄
(N)
k = ĀN(D̄

(N)
i )k ῑN,i = AN(D

(N)
i )kιN,i. (2.18)

The procedure is illustrated by the following diagram

ΛN
− ΛN,i

− ΛN,i
− ΛN

−
-

ῑN,i -
(D̄

(N)
i )k

-ĀN
.

The expressions for the first Hamiltonians H
(N)
k =

(
AN(D

(N)
i )kιN,i

)
are given below:

H
(N)
0 = N,

H
(N)
1 =

∑
n>0

npn
∂

∂pn
+ (1 + 2β)

N2 −N
2

,

H
(N)
2 =

∑
n,k>0

nkpn+k
∂

∂pn

∂

∂pk
+ (1 + β)

∑
n,k>0

(n+ k)pnpk
∂

∂pn+k

− β
∑
n>0

n2pn
∂

∂pn

− (1 + 2β)
∑
n>0

npn
∂

∂pn
+ (3β + 2)N

∑
n>0

npn
∂

∂pn

+
1

6
(2N3 − 3N2 +N) +

β

6
(7N3 − 12N2 + 5N) + β2(N3 − 2N2 +N).
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2.2 The limit in the space Λ̂

1. Let Λ̂ = Λ[p0] be the ring of symmetric functions extended by the free variable
p0, defined at the beginning of section 1.3. Let Ψ(z) and Ψ∗(z) be vertex operators
Λ̂→ C[z, z−1]]⊗ Λ̂,

Ψ(z) = zp0 exp

(
−
∑
n>0

pn
nzn

)
exp

(∑
n≥0

zn
∂

∂pn

)
, (2.19)

Ψ∗(z) = z−p0 exp

(∑
n>0

pn
nzn

)
exp

(
−
∑
n≥0

zn
∂

∂pn

)
. (2.20)

The following relations are valid:

Ψ(z)Ψ(w) = (w − z) : Ψ(z)Ψ(w) :

Ψ(z)Ψ∗(w) =
1

(w − z)
: Ψ(z)Ψ(w)∗ :,

(2.21)

where : : means bosonic normal ordering — all operators ∂
∂pn

are moved to the right and

operators pn are moved to the left. Operators (2.19) and (2.20) satisfy the relations:

1

2πi

∫
z	w

Ψ(w)Ψ∗(z)dz =
1

2πi

∫
z	w

Ψ∗(w)Ψ(z)dz = 1.

2. Let |v〉 = f(p0, p1, ..., pk, ...)|0〉 ∈ Λ̂, where f(p0, p1, ..., pk, ...) is a polynomial in
pk. Define the evaluation map π̄N : Λ̂→ ΛN

− by the prescription

π̄N |v〉 = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉. (2.22)

The function π̄N |v〉 is antisymmetric polynomial

π̄N |v〉 =
∏
i<j

(xi − xj)f(N, (x1 + . . .+ xN), ..., (xk1 + · · ·+ xkN), ...). (2.23)

Indeed, Ψ(xN) · · ·Ψ(x1) =
∏

i<j(xi − xj) : Ψ(xN) · · ·Ψ(x1) : due to (2.21). The operator∏
i exp

(∑
n≥0 x

n
i

∂
∂pn

)
replaces every item pk in f with xk1 + · · ·+ xkn, k = 0, 1, . . ., while

〈0|
∏
i

xp0i exp

(
−
∑
n>0

pn
nxni

)
= 〈0|.

3. Similarly we define the map

π̄N−1,i : zp0C[z, z−1]]⊗ Λ̂→ C[xi, x
−1
i ]]⊗ Λ(−)[x1, . . . , xi−1, xi+1, . . . xN ]

as follows

π̄N−1,i : zp0+k ⊗ |v〉 → (−1)i+1〈0|Ψ(xN) · · ·Ψ(xi+1)Ψ(xi−1) · · ·Ψ(x1)xp0+k
i |v〉. (2.24)

Define the inclusion ι : Λ̂→ zp0C[z, z−1]]⊗ Λ̂ by the relation

ι(|v〉) = Ψ(z)|v〉.
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Lemma 2.2 The following diagram is commutative:

Λ̂ zp0C[z, z−1]]⊗ Λ̂

ΛN
− ΛN,i

−

-ι

?

π̄N

?

π̄N−1,i

-
ῑN,i

(2.25)

Proof. Let us check the commutativity of the diagram (2.25) for the element |v〉 =
f(p0, p1, ..., pk, ...)|0〉 ∈ Λ̂. The composition of π̄N and ῑN,i defines the natural embedding
of the antisymmetric polynomial

〈0|Ψ(xN) · · ·Ψ(x1)|v〉

into the space ΛN,i
− , which is the expansion of the function in x1, . . . xN over the variable

xi. Applying the maps ι and π̄N−1,i we obtain the following relation

π̄N−1,iι|v〉 = π̄N−1,iΨ(z)|v〉 =

(−1)i+1〈0|Ψ(xN) · · ·Ψ(xi+1)Ψ(xi−1) · · ·Ψ(x1)Ψ(xi)|v〉 = 〈0|
∏

N≥j≥1

Ψ(xj)|v〉,

which coincides with natural embedding ῑN,i of 〈0|Ψ(xN) · · ·Ψ(x1)|v〉. �

4. Thus we have shown that for any |v〉 ∈ Λ̂ the element π̄N−1,iι(|v〉) ⊂ C[xi] ⊗
Λ(−)[x1, . . . , xi−1, xi+1, . . . xN ] = ΛN,i

− is polynomial in xi. Denote by U the space

U = ∩N π̄−1
N−1,i

(
ΛN,i
−

)
.

Due to Lemma 2.2 we have the inclusion ι(Λ̂) ⊂ U .
Define the map A : zp0C[z, z−1]]⊗ Λ̂→ Λ̂ of antisymmetrization as follows

AF =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
, (2.26)

where F (z) ∈ zp0C[z, z−1]]⊗ Λ̂. In other words

A : zp0+k ⊗ |v〉 → 1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)zp0+k

u− z
|v〉.

Lemma 2.3 The following diagram is commutative:

zp0C[z, z−1]]⊗ Λ̂ ⊃ U Λ̂

ΛN,i
− ΛN

−

-A

?

π̄N−1,i

?

π̄N

-
ĀN

. (2.27)
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Proof. We can present any element in U as a series
∑

k z
p0+k⊗|vk〉. We check the commu-

tativity of the diagram (2.27) for the element zp0+k⊗|v〉, where |v〉 = f(p0, p1, ..., pk, ...)|0〉.
Following the definitions we obtain:

π̄N−1,i(z
p0+k ⊗ |v〉) = (−1)i+1〈0|Ψ(xN) · · ·Ψ(xi+1)Ψ(xi−1) · · ·Ψ(x1)xp0+k

i f(p0, p1, . . . )|0〉.
Thus

π̄N−1,i(z
p0+k ⊗ |v〉) = ∆(x1, . . . xi−1, xi+1, . . . , xN)f(xi; {pk}),

where f(z; {pk}) = zk+N−1f(N − 1, p1, p2. . . . ). Using Proposition 2.2 we obtain

ĀN π̄N−1,i(z
p0+k ⊗ |v〉) =

∆(x1, . . . xN)

2πi

∫
z	0

dzV ′−(z)V ′+(z)zk+N−1f(N − 1, p1, p2, . . . ) =

=〈0|Ψ(xN) . . .Ψ(x1)
1

2πi

∫
z	0

dzV ′−(z)V ′+(z)zk+N−1f(N − 1, p1, p2 . . . )|0〉.

(2.28)

Going by arrows π̄N and A we get

π̄NA(zp0+k ⊗ |v〉) =

〈0|Ψ(xN) · · ·Ψ(x1)
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)zp0+k

u− z
f(p0, p1, . . . |0〉.

To compare with the RHS of (2.28) we use the following transformations:

π̄NA(zp0+k ⊗ |v〉) =

〈0|Ψ(xN) · · ·Ψ(x1)
1

(2πi)2

∫
z	0

dz

∫
u	z

du
V ′−(u)V ′+(u)e

− ∂
∂p0 zp0+k

u− z
f(p0, p1, . . . )|0〉 =

〈0|Ψ(xN) · · ·Ψ(x1)
1

(2πi)2

∫
z	0

dz

∫
u	z

du
V ′−(u)V ′+(u)zk+N−1

u− z
f(p0 − 1, p1, p2, . . . )|0〉 =

〈0|Ψ(xN) . . .Ψ(x1)
1

2πi

∫
z	0

dzV ′−(z)V ′+(z)zk+N−1f(N − 1, p1, p2, . . . )|0〉.

Thus we prove the commutativity of the diagram (2.27) for the element zp0+k⊗|v〉. For the
sum

∑
k z

p0+k ⊗ |vk〉 we use the property of the space U , that its image by the projection
π̄N−1,1 is a finite sum. �

5. Define an operator D : Λ̂⊗ C[z, z−1]]→ Λ̂⊗ C[z, z−1]]

DF (z) = z
∂

∂z
F (z) + β

1

(2πi)2

∫
w	0

dw

∫
u	w

du

(u− w)

Ψ∗(u)(
1− w

z

) (Ψ(w)F (z)−Ψ(z)F (w)) .

(2.29)
Now we formulate the main result of this section

Theorem 2.1 The operator D acting on the auxillary space U is a pullback of Heckman-
Dunkl operators D̄

(N)
i under the map π̄N−1,i.

Proof. Due to Lemmas 2.2, 2.3 we get the following commutative diagram:

U ⊂ Λ̂⊗ C[z, z−1]] ΛN,i
−

U ⊂ Λ̂⊗ C[z, z−1]] ΛN,i
−

-
π̄N−1,i

?
D

?
D̄

(N)
i

-
π̄N−1,i

. (2.30)
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Due commutativity (2.30) D maps the subspace U into itself and is a pullback of D̄
(N)
i

under the map π̄N−1,i. �

6. Define operators Hk = ADkι : Λ̂→ Λ̂ by the formula

Hk : Λ̂
ι−→ U

Dk−→ U
A−→ Λ̂. (2.31)

Due to (2.30) we get the commutative diagram

Λ̂ Λ̂

ΛN
− ΛN

−

-Hk

?

π̄N

?

π̄N

-
H̄

(N)
k

. (2.32)

Proposition 2.4 The operators Hk generate a commutative family of Hamiltonians of
the limiting system.

Proof. For any N operators H̄
(N)
k commute. Due to commutativity of (2.32) and the

fact that ∩Ker(π̄N) = ∅ operators Hk commute as well. �

We present the expression for the first Hamiltonians:

H0 = p0,

H1 =
∑
n>0

npn
∂

∂pn
+ (1 + 2β)

p2
0 − p0

2
,

H2 =
∑
n,k>0

nkpn+k
∂

∂pn

∂

∂pk
+ (1 + β)

∑
n,k≥0
n+k>0

(n+ k)pnpk
∂

∂pn+k

−β
∑
n>0

n2pn
∂

∂pn
− (1 + 2β)

∑
n>0

npn
∂

∂pn
+ βp0

∑
n>0

npn
∂

∂pn
+

+
1

6
(2p3

0 − 3p2
0 + p0) +

β

6
(7p3

0 − 12p2
0 + 5p0) + β2(p3

0 − 2p2
0 + p0).

The limiting expression H corresponding to (1.4) can be expressed by the formula similar
to (1.8):

H = H2 − 2β(p0 − 1)H1 + β2p0(p0 − 1)2 =

=
∑
n,k>0

nkpn+k
∂

∂pn

∂

∂pk
+ (1 + β)

∑
n>0,k≥0

(n+ k)pnpk
∂

∂pn+k

− β
∑
n>0

n2pn
∂

∂pn

+(p0 − 1)
∑
n>0

npn
∂

∂pn
+

1

6
(2p3

0 − 3p2
0 + p0) +

β

6
p0(p2

0 − 1).

The Hamiltonian H + H1 with shift β → (β − 1) coincides with the bosonic limiting
expression (1.31) by putting p0 = 0.

7 Comments. The space Λ of symmetric functions can be realized either as the
projective limit of the rings of symmetric polynomials in N variables, or the projective
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limit of the spaces of antisymmetric polynomials in N variables. The latter means the
commutativity of the diagrams

Λ

ΛN
− ΛN+1

−

@
@@R

αN+1�
��	

αN

�
ω−N+1

,

where

ω−N+1 : f̄(x1, . . . xN , xN+1) 7→ f̄(x1, . . . xN , 0)
N∏
i=1

x−1
i , and

αN : f(p1, · · · pN) 7→
∏
i<j

(xi − xj)f((x1 + . . .+ xN), ..., (xk1 + · · ·+ xkN), ...).

The space Λ̂ is not a projective limit of the spaces ΛN
− due to the presence of p0 which

breaks the commutativity of analogous diagram for Λ̂ with αN replaced by maps π̄N . On
the other hand, CS Hamiltonians H̄k theirselves do not compose the projective system
since ω−N+1H̄

(N+1)
k 6= H̄

(N)
k ω−N+1. However, the Hamiltonians H̄

(N)
k written in form (2.18)

are compatible with maps ω−N+1, if we replace each occurrence of N in H
(N)
k to N + 1

in H
(N+1)
k . Moreover, each finite Hamiltonian can be restored from its limit by formal

replacement of each occurrence of p0 by operator of multiplication on the number N of
particles.

This correspondence hints the form of corrections in Hamiltonians to form a projec-
tive system: substract terms containing p0 in the limit expression. Here are examples of
corrections for the first Hamiltonians:

H
(N)
pr,1 = H

(N)
1 − (1 + 2β)

N2 −N
2

,

H
(N)
pr,2 = H

(N)
2 − 3βNH

(N)
pr,1

− 1

6
(2N3 − 3N2 +N)− β

6
(7N3 − 12N2 + 5N)− β2(N3 − 2N2 +N).

2.3 Realization in the Fock space

1. The constructed above Hamiltonians form a commutative family of operators in the
space Λ̂. Moreover, they commute inside the Heisenberg algebra and thus can be used as
well in its other representations, for instance, in the bosonic Fock space F . In this section
we show how to realize the limit in the bosonic Fock space, the key point is to define the
analog of projection π̄N . The formulas for the Hamiltonians remains the same.

The bosonic Fock space is usually defined as a free commutative algebra C[q, p1, p2, . . . ]
on varibles pk and q. Define the vacuum vector |0〉 and a dual vacuum 〈0| of the bosonic
Fock space F :

∂

∂pn
|0〉 = 0, n ≥ 1 〈0|pn = 0, n ≥ 0, 〈0|p0 = p0|0〉 = 0.

Denote by 〈n| and |n〉 the following vectors:

|n〉 = e
−n ∂

∂p0 |0〉 = q− n|0〉, 〈n|= 〈0|qn.
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These vectors are biorthogonal 〈n|m〉 = δn,m and have the following properties

〈n|p0 = n〈n|, p0|n〉 = n|n〉.

Any vector in space F can be presented as a linear combination of such vectors |v〉 =
f(p1, ..., pk, ...)|c〉, where f(p1, ..., pk, ...) is a polynomial in pk and c is so called charge of
|v〉 and we denote it by p0(v). Denote by Fc the linear span of vectors with charge c, then
F is graded according to the charge F = ⊕c∈ZFc.

Define the projection πN : F → ΛN
− by the prescription

πN |v〉 = 〈0|Ψ(xN) · · ·Ψ(x1)|v〉. (2.33)

Due to biorthogonality 〈n|m〉 = δn,m and fact that product Ψ(xN) · · ·Ψ(x1) contains qN

we have πN(Fc) = 0 for c 6= N . Thus for |v〉 = f(p1, ..., pk, ...)|c〉 we have

πN |v〉 =

{∏
i<j(xi − xj)f((x1 + . . .+ xN), ..., (xk1 + · · ·+ xkN), ...) for p0(v) = N

0 for p0(v) 6= N
.

Similarly we define the map

πN−1,i : zp0C[z, z−1]]⊗F → C[xi, x
−1
i ]]⊗ Λ(−)[x1, . . . , xi−1, xi+1, . . . xN ]

as follows

πN−1,i :zp0+k ⊗ |v〉 →
(−1)i+1〈0|Ψ(xN) · · ·Ψ(xi+1)Ψ(xi−1) · · ·Ψ(x1)xp0+k

i |v〉.

Due to the same arguments πN−1,i(z
p0C[z, z−1]] ⊗ Fc) = 0 if c 6= N . Then we have the

analogous commutativity as in Lemma 2.2 for F and πN instead of Λ̂ and π̄N , which
is nontrivial only for the sector FN , the proof remains the same. Denote by ŨN ⊂
zp0C[z, z−1]]⊗F the space

ŨN = π−1
N−1,i

(
C[xi]⊗ Λ(−)[x1, . . . , xi−1, xi+1, . . . xN ]

)
.

We have the inclusion ι(FN) ⊂ ŨN . The analogous commutativity as in Lemma 2.3 holds:

zp0C[z, z−1]]⊗FN−1 ⊃ ŨN FN

ΛN,i
− ΛN

−

-A

?

πN−1,i

?

πN

-
ĀN

. (2.34)

The proof may be reproduced as in Lemma 2.3 changing each occurrence of p0 by N − 1
due to ŨN ∈ zp0C[z, z−1]]⊗FN−1. Thus we have the commutative diagram for the Dunkl
operators which is nontrivial for the N -th sector of the Fock space FN :

FN−1 ⊗ C[z, z−1]] ⊃ ŨN ΛN,i
−

FN−1 ⊗ C[z, z−1]] ⊃ ŨN ΛN,i
−

-
πN−1,i

?

D

?

D̄
(N)
i

-
πN−1,i

. (2.35)

On the other sectors of the Fock space (2.35) holds due to πN−1,i projects all to zero. We
arrive to the following
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Proposition 2.5 The Hamiltonians Hk : F → F are the pullback of Hamiltonians H̄
(N)
k

with respect to the maps πN .

In other words, the Hamiltonians (2.31) obey the commutative diagram

F F

ΛN
− ΛN

−

-
Hk

?

πN

?

πN

-
H̄

(N)
k

. (2.36)

2. Now we want to describe the construction in the fermionic Fock space realized
as semi-infinite wedges and present the projection analogous to πN . We introduce the
Clifford algebra generated by fermions ψk, ψ

∗
k for k ∈ Z with anti-commutation relations

ψiψj + ψjψi = ψ∗iψ
∗
j + ψ∗jψ

∗
i = 0,

ψiψ
∗
j + ψ∗jψi = δij.

The fermionic Fock space F can be defined as a representation of the Clifford algebra,
where the vacuum vetor |0〉 is defined as follows:

ψn|0〉 = 0 n ≥ 0, ψ∗n|0〉 = 0 n < 0. (2.37)

According to (2.37) the fermionic normal ordering
...

... is defined as follows:

...ψ∗iψj
... =

{
ψ∗iψj, j ≥ 0

−ψjψ∗i , j < 0
.

In other words all annihilation operators are moved to the right and all creation operators
are moved to the left taking into account that the factor (−1) appears after exchanging
neighboring fermionic operators. Any wedge in the space Λ

∞
2 (C[z, z−1]) can be obtained

by acting of fermionic operators on the vacuum state

...ψk1ψk2 . . . ψknψ
∗
l1
ψ∗l2 . . . ψ

∗
lm

...|0〉. (2.38)

A charge of element (2.38) can be defined as m−n. We introduce the shifted vacuum |c〉

|c〉 =

{
ψ∗c−1 . . . ψ

∗
1ψ
∗
0|0〉 c > 0

ψc . . . ψ−2ψ−1|0〉 c < 0
.

In F we can choose a basis |λ, c〉 parameterized by partition λ = (λ1, λ2, . . . , λn):

|λ, c〉 = ψ∗λ1−1ψ
∗
λ2−2 . . . ψ

∗
λn−n|c− n〉. (2.39)

For fixed c vectors |λ, c〉 generate the c-th sector Fc of the fermionic Fock space as a vector
space.

The fermionic Fock space admits a presentation F ∼= Λ
∞
2 (C[z, z−1]) in “semi-infinite

wedges”:

zk1 ∧ zk2 ∧ . . . ∧ zkm ∧ . . . , k1 > k2 > · · · > km > . . . , kn+1 = kn − 1 all n > N,
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which form a basis of F . The vacuum state |0〉 corresponds to

|0〉 = z−1 ∧ z−2 ∧ z−3 ∧ z−4 ∧ . . .

An action of fermionic operators on the wedge v is presented by formulas:

ψn(v) =
∂

∂zn
v, ψ∗n(v) = zn ∧ v.

Note that the element zn is added by ψ∗n at the very beginning of the sequence, so the
permutiaion with other elements may produce a sign. The symbol ∂

∂zn
means that if the

wedge v = zn ∧ w then
∂

∂zn
(zn ∧ w) = w.

The shifted vacuum is given by

|c〉 = zc−1 ∧ zc−2 ∧ zc−3 ∧ zc−4 . . . .

and |λ, c〉 from (2.39)

|λ, c〉 = zλ1+c−1 ∧ zλ2+c−2 ∧ . . . ∧ zλk+c−k ∧ . . . ∧ zλn+c−n ∧ z−n−1+c ∧ z−n−2+c . . . .

Define the space ΛN(C[z, z−1]) of finite wedge zk11 ∧ zk22 ∧ . . . ∧ z
kN
N with N elements.

It can be identified with the antisymmetric function ΛN(C[z, z−1]) ' Λ−[z±1
1 , . . . , z±1

N ]:

zk11 ∧ zk22 ∧ . . . ∧ z
kN
N ⇐⇒ Alt(zk11 , . . . , z

kN
N ) = det

i,j=1...N
z
kj
i . (2.40)

For wedge v = zk1 ∧ zk2 ∧ . . . ∧ zki ∧ . . . ∈ Λ
∞
2 (C[z, z−1]) denote by p0(v) the charge of v.

We can define the embedding ωN : Λ
∞
2 (C[z, z−1])→ ΛN(C[z, z−1]) :

ωN(v) =

{
zk11 ∧ zk22 ∧ . . . ∧ z

kN
N if p0(v) = N

0 if p0(v) 6= N
(2.41)

that simply keep only the first N elements in wedge v if its charge equals N . For a
partition λ = (λ1, λ2, . . . , λn) we have

ωN(|λ, c〉) =

{
zλ1+N−1

1 ∧ zλ2+N−2
2 ∧ . . . ∧ zλNN if c = N

0 if c 6= N
,

where we put λi = 0 for i > n. Due to the isomorphism (2.40) we obtain

ωN(|λ,N〉) ' det
i,j=1...N

z
λj+N−j
i =

∏
i<j

(zi − zj) sλ(z1, z2, . . . , zN),

where sλ(z1, z2, . . . , zN) is a Schur polynomial. Define operators

an =
∑
j

...ψ∗jψj+n
.... (2.42)

It can be checked that they commute as bosonic operators

[ak, al] = kδk+l,0.
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Define the operator Q with the following commutation relations

[an, Q] = δ0,n.

The operator eQ is an operator which shifts the charge of the fermionic vector :

eQψne
−Q = ψn+1, eQψ∗ne

−Q = ψ∗n+1.

Define the fermion field Ψ(x) =
∑

k ψkx
k and Ψ∗(x) =

∑
k ψ
∗
kx
−k−1 with

Ψ∗(x)Ψ(x′) =
1

x′ − x
+

...Ψ∗(x)Ψ(x′)
... x < x′. (2.43)

The boson fermion correspondence is given by the formula (2.42) and the following rela-
tions:

Ψ(x) =: xa0eQ exp

(
−
∑
n>0

a−n
nxn

)
exp

(∑
n>0

an
n
xn

)
: (2.44)

Ψ∗(x) =: x−a0e−Q exp

(∑
n>0

a−n
nxn

)
exp

(
−
∑
n>0

an
n
xn

)
:

This corresponds with the notations given at the beginning of this paragraph where we
put:

a−n = pn, an = n
∂

∂pn
for n > 0,

a0 = p0, Q = − ∂

∂p0

.

and with notations of vertex operators (2.19) which are representation of ψ(z) and ψ∗(z).
Due to the boson-fermion correspondence we formulate the following

Proposition 2.6 The diagram (2.45) is commutative for N > 0.

F bos Ffer

ΛN
− ΛN(C[z, z−1])

-

?

πN

?

ωN

�

-�

(2.45)

Here the upper isomorphism is the boson-fermion correspondence (2.42), (2.44). The
lower isomorphism is given by (2.40).
Proof. Consider a vector |λ, c〉 ∈ Fferc for a partition λ = (λ1, λ2, . . . , λn). We have
shown that

ωN(|λ, c〉) =

{∏
i<j (zi − zj) sλ(z1, z2, . . . , zN) if c = N

0 if c 6= N
,

for n ≤ N . One can show [3] that boson-fermion correspondence implies |λ, c〉 ' sλ(p)|c〉,
where sλ(p) is a Schur polynomial in terms of pk. Applying (2.33) to sλ(p)|c〉 we obtain

πN(sλ(p)|c〉) =

{∏
i<j (zi − zj) sλ(z1, z2, . . . , zN) if c = N

0 if c 6= N
.

�
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3 Generating functions of commuting Hamiltonians

for some special values of the coupling constant

In this section we derive the formulas for the densities of commuting Hamiltonians (2.31)
with β = 0. In this case the Dunkl operator (2.29) is simply the differential operator(
z ∂
∂z

)
and the Hamiltonians are given by

Hk =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)

u− z

(
z
∂

∂z

)k
Ψ(z). (3.1)

They are the pullbacks of (1.7) in case β = 0:

H̄
(N)
k =

N∑
i=1

(
xi

∂

∂xi

)k
.

In this section we assume that β = 0 and use the same notations for Hamiltonians as
in (2.31). In this case the Hamiltonians can be simply expressed as operators on the
fermionic Fock space

Hn =
∑
k

...knψ∗kψk
....

The boson-fermion correspondence allows to express the Hamiltonians (3.1) in the bosonic
Fock space, it was done by A. Pogrebkov [45] for the additive version and later by P. Rossi
[50] on the circle. In other notations the correspondence for the exponential generating
function of Hamiltonians is given by the formula [50]:

H (x) =
∞∑
n=0

xn

n!
Hn =

B(x)

2πix

∫
z	0

dz

z

(
: exS(xz ∂

∂z
)ϕ(z) : −1

)
. (3.2)

Here

S(t) =
sinh( t

2
)

t
2

,

B(x) =
x

ex − 1
=
∞∑
n=0

Bn

n!
xn (3.3)

— exponential generating function for Bernoulli numbers and a derivative of the bosonic
field expressed in terms of in terms of (1.14)

ϕ(z) = ϕ−(z) + ϕ+(z). (3.4)

In this section we provide the explicit expressions of the densities for the family of
commuting Hamiltonians (3.1) different from (3.2). We deduce two different formulas.
We derive first formula by calculating the integral in variable u in (3.1) using (2.19, 2.20),
this leads to the following answer

H (x) =
B(x)

2πix

∫
z	0

dz

z

(
: exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
: −1

)
, (3.5)
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where the exponent is a formal series and B(x) is given by (3.3).
The second formula can be obtained by fermionic calculus. The answer will be given

in terms of the integral operator K : F ⊗ C[[z, z−1]]→ F ⊗ C[[z, z−1]]

K [f(z)] =
1

2πi

∫
w	z

dw

w − z
ϕ(w)f(z),

f(z) ∈ F ⊗ C[[z, z−1]]. Then the generating function can be expressed by the following
formula

H (x) =
B(x)

2πix

∫
z	0

dz
exK − 1

K

[
ϕ(z)

z

]
(3.6)

Here the operator T (x,K) = exK−1
K

is understood as a formal power series, see (3.22).

3.1 Bosonic calculations with vertex operators

Denote by Wk(z) the following integral

Wk(z) =
1

2πi

∫
u	z

du
Ψ∗(u)

u− z

(
z
∂

∂z

)k
Ψ(z) (3.7)

and by W (z, x) the exponential generating function.

W (z, x) =
∞∑
n=0

Wn(z)

n!
xn. (3.8)

Then Wk(z) is the corresponding density of the Hamiltonian Hk:

Hk =
1

2πi

∫
z	0

dz

z
Wk(z).

Densities Wk(z), as we shall see (3.20), can be written as fermionic normal ordered ex-
pression

Wk(z) =
...Ψ∗(z)

(
z
∂

∂z

)k
Ψ(z)

.... (3.9)

Our aim is to find the expressions for the densities Wk and the generating function (3.8)
and to prove formula (3.5).

Denote by

η(z) = p0 ln(z)−
∑
n>0

pn
nzn

+
∑
n≥0

zn
∂

∂pn

the bosonic field and, its derivative ϕ(z) =
(
z ∂
∂z

)
η(z) = ϕ−(z) + ϕ+(z) given in (1.14).

Then we can also rewrite the operators (2.19), (2.20) in the following form

Ψ(z) =: eη(z) : Ψ∗(z) =: e−η(z) :, (3.10)

where : : means bosonic normal ordering — all operators ∂
∂pn

are placed to the right and
operators pn are placed to the left. The simple relation follows

: Ψ∗(z)Ψ(z) := 1. (3.11)
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Denote by wn(z) =: Ψ∗(z)
(
z ∂
∂z

)n
Ψ(z) :, it satisfies the recurrent relation:

wn+1(z) =: ϕ(z)wn(z) : +z
∂

∂z
wn(z), (3.12)

which follows from (3.10). In comparison with (3.9) wn(z) is boson normal ordered. The
expressions for n = 0, 1, 2, 3, 4 are given in section 3.3. Combine wk(z) into a generating
function w(z, x):

w(z, x) =
∞∑
k=0

wk(z)
xk

k!
=: exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
: . (3.13)

Here the exponent of operator means the formal series

exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
= 1 + x

(
z
∂

∂z
+ ϕ(z)

)
+
x

2!

(
z
∂

∂z
+ ϕ(z)

)(
z
∂

∂z
+ ϕ(z)

)
+ . . .

acting on the constant function. Due to (3.12) we can write the differential equation on
the generating function w(z, x):

∂w(z, x)

∂x
=: ϕ(z)w(z, x) : +z

∂w(z, x)

∂z
. (3.14)

Futher we want to express Wk(z) from wn(z), we formulate the answer in Proposition 3.1.
We devide the proof in three lemmas.

We use the following notations for un(z) =: Ψ(z)
(
z ∂
∂z

)n
Ψ∗(z) : with the recurrent

relations:

un+1(z) = − : ϕ(z)un(z) : +z
∂

∂z
un(z)

and generating function u(z, x)

u(z, x) =
∞∑
k=0

uk(z)
xk

k!
=: exp

(
x

(
z
∂

∂z
− ϕ(z)

))
: .

Denote by

vn(z) =: Ψ∗(z)zn
∂n

∂zn
Ψ(z) : qn(z) =: Ψ(z)zn

∂n

∂zn
Ψ∗(z) : . (3.15)

We have the following expressions for their exponential generating functions:

v(z, x) =
∞∑
k=0

vk(z)
xk

k!
=: Ψ∗(z)Ψ(z + xz) :,

q(z, x) =
∞∑
k=0

qk(z)
xk

k!
=: Ψ(z)Ψ∗(z + xz) : .

Now we formulate a well known fact about exponential generating functions by the fol-
lowing
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Lemma 3.1 Let A(x) =
∑∞

k=0 ak
xk

k!
and B(x) =

∑∞
k=0 bk

xk

k!
be exponential generating

function, C(x) = A(x)B(x) is a product of A(x) and B(x). Then C(x) =
∑∞

k=0 ck
xk

k!

is an exponential generating function with coefficients cn(x) expressed by the following
formula:

cn =
n∑
k=0

(
n

k

)
akbn−k.

Now we formulate several technical lemmas:

Lemma 3.2 The following relations are valid:

:
∑l

k=0

(
l
k

)
uk(z)wl−k(z) := δl,0,(i)

:
∑l

k=0

(
l
k

)
vk(z)ql−k(z) := δl,0,(ii)

where δl,0 is the Kronecker delta.

Proof. This is an immediate corollary of Lemma 3.1 and the relations for the generating
functions:

: u(z, x)w(z, x) :=: exp

(
x

(
z
∂

∂z
+ ϕ(z)

))
exp

(
x

(
z
∂

∂z
− ϕ(z)

))
:= 1,

: v(z, x)q(z, x) :=: Ψ∗(z)Ψ(z + xz)Ψ(z)Ψ∗(z + xz) := 1.

�

Lemma 3.3 The antisymmetrization A given in (2.26) of function zn ∂n

∂zn
Ψ(z) is given

by the following formula:

A
(
zn

∂n

∂zn
Ψ(z)

)
=

1

n+ 1

(
1

2πi

)∫
z	0

dz

z
: Ψ∗(z)

(
zn+1 ∂

n+1

∂zn+1
Ψ(z)

)
: (3.16)

Proof. We have to prove that

1

2πi

∫
y	z

dy
Ψ∗(y)

y − z

(
zn

∂n

∂zn
Ψ(z)

)
=

1

n+ 1

vn+1(z)

z
.

Differentiating n times (2.21) by z and multiplying by zn we obtain:

Ψ∗(y)

(
zn

∂n

∂zn

)
Ψ(z) =

n∑
k=0

(
n

k

)
k! (−z)k

(z − y)k+1
:

(
zn−k

∂n−k

∂zn−k

)
Ψ(z)Ψ∗(y) : .

After the normal ordering we calculate the integral:

1

2πi

∫
y	z

dy
Ψ∗(y)

y − z

(
zn

∂n

∂zn
Ψ(z)

)
=

= −1

z

n∑
k=0

(
n

k

)
1

2πi

∫
y	z

dy
k! zk+1

(y − z)k+2
:

(
zn−k

∂n−k

∂zn−k

)
Ψ(z)Ψ∗(y) :=
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= −1

z

n∑
k=0

(
n

k

)
1

k + 1
: qk+1(z)vn−k(z) := − 1

z(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
: qk+1(z)vn−k(z) :=

vn+1(z)

z(n+ 1)
.

In the last equality we use Lemma 3.2. �

We use the following notations for coefficients which connect the expression for two
types of derivatives

(
z ∂
∂z

)n
and zn ∂n

∂zn
:(

z
∂

∂z

)n
=

n∑
k=1

an,kz
k ∂

k

∂zk
,

zn
∂n

∂zn
=

n∑
k=1

bn,k

(
z
∂

∂z

)k
.

One can check the recurrent relations:

an,k = kan−1,k + an−1,k−1, a0,n = δ0,n,

bn,k = −(n− 1)bn−1,k + bn−1,k−1, b0,n = δ0,n.

Denote by Bn the Bernoulli number given by the exponential generating function (3.3) or
equivalently by the recurrent formula:

B0 = 1,

Bn =
−1

n+ 1

n∑
k=1

(
n+ 1

k + 1

)
Bn−k.

The following lemma can be proved by the induction

Lemma 3.4 The following relation is valid:

n∑
l=m

1

l
an−1,l−1bl,m =

1

n
Bn−m

(
n

m

)
.

Now we can provide an expression for the density (3.7) and the generating function (3.8).
We formulate the following

Proposition 3.1 The density Wn(z) is expressed by the formula:

Wn−1(z) =
1

n

n∑
k=1

(
n

k

)
Bn−kwk(z), (3.17)

the exponential generating function (3.8) is given by the formula

W (z, x) =
: exp

(
x
(
z ∂
∂z

+ ϕ(z)
))

: −1

ex − 1
. (3.18)

and satisfies the differential equation

∂W (x, z)

∂x
=: ϕ(z)W (z, x) : +z

∂W (x, z)

∂z
− exW (z, x)− ϕ(z)

ex − 1
. (3.19)
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Proof. By definition

Wn−1(z) =
z

2πi

∫
y	z

dy
Ψ∗(y)

y − z

(
z
∂

∂z

)n−1

Ψ(z) =
z

2πi

∫
y	z

dy
Ψ∗(y)

y − z

n−1∑
k=1

an−1,k

(
zk

∂k

∂zk
Ψ(z)

)
.

Using Lemma 3.3 we obtain:

Wn−1(z) =: Ψ∗(z)

(
n−1∑
k=1

1

k + 1
an−1,kz

k+1 ∂
k+1

∂zk+1
Ψ(z)

)
:

=: Ψ∗(z)
n−1∑
k=1

1

k + 1
an−1,k

k+1∑
m=1

bk+1,m

(
z
∂

∂z

)m
Ψ(z) :

=
n∑

m=1

n−1∑
k=m−1

1

k + 1
an−1,kbk+1,mwm(z) =

1

n

n∑
m=1

(
n

m

)
Bn−mwm(z)

In the last equality we use Lemma 3.4. Thus we obtain (3.17).
Now we check the formula for the generating function. We have two exponential

generating functions:

1

x
(w(z, x)− 1) =

1

x

(
∞∑
k=1

wk(z)
xk

k!

)
=
∞∑
k=0

wk+1(z)

k + 1

xk

k!

and B(x) given by (3.3). Using Statement 3.1 we check that

n−1∑
k=0

1

k + 1

(
n− 1

k

)
Bn−1−kwk+1(z) =

n∑
m=1

1

m

(
n− 1

m− 1

)
Bn−mwm(z)

=
1

n

n∑
m=1

(
n

m

)
Bn−mwm(z) = Wn−1(z).

The differntial equation (3.19) directly follows from (3.14). �

We proved that the densities Wk(z) are linearly expressed by wn(z) (3.13) and present
these expressions for the first densities:

W0(z) = w1(z), W1(z) =
1

2
w2(z)− 1

2
w1(z),

W2(z) =
1

3
w3(z)− 1

2
w2(z) +

1

6
w1(z),

W3(z) =
1

4
w4(z)− 1

2
w3(z) +

1

4
w2(z).

The expressions for the corresponding Hamiltonians are given below

H0 = p0, H1 =
∑
n>0

npn
∂

∂pn
+

1

2

(
p2

0 − p0

)
,

H2 =
∑
n,k>0

nkpn+k
∂

∂pn

∂

∂pk
+
∑
n,k>0

(n+ k)pnpk
∂

∂pn+k

+

+(2p0 − 1)
∑
n>0

npn
∂

∂pn
+

1

6
(2p3

0 − 3p2
0 + p0),

50



H3 =
∑

n,k,m>0

nkmpn+k+m
∂

∂pn

∂

∂pk

∂

∂pm
+

∑
n,k,m>0

(n+ k +m)pnpkpm
∂

∂pn+k+m

+

+
3

2

∑
k,m>0

m+k−1∑
n=1

kmpnpm+k−n
∂

∂pk

∂

∂pm
+

1

2

∑
n>0

n3pn
∂

∂pn
+

+

(
3p0 −

3

2

) ∑
n,k>0

nkpn+k
∂

∂pn

∂

∂pk
+

(
3p0 −

3

2

) ∑
n,k>0

(n+ k)pnpk
∂

∂pn+k

+

(
3p2

0 − 3p0 +
1

2

)∑
n>0

npn
∂

∂pn
+

1

4

(
p4

0 − 2p3
0 + p2

0

)
.

3.2 Boson-fermion correspondence and integral operators

Due to this correspondence we can compute the Hamiltonians (3.1) in fermionic variables
using (2.43):

Hk =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)

u− z

(
z
∂

∂z

)k
Ψ(z) =

1

2πi

∫
z	0

dz
...Ψ∗(z)

(
z
∂

∂z

)k
Ψ(z)

...,

(3.20)
which gives expressions (??) for the Hamiltonians in the fermionic Fock space.

The Hamiltonians in the bosonic Fock space one can obtain directly form the boson-
fermion correspondence :

...Ψ∗(x)Ψ(x′)
... = Ψ∗(x)Ψ(x′)− 1

x− x′
→ : Ψ∗(x)Ψ(x′)− 1 :

x− x′
.

Putting x′ = x − εx and expending into the series by ε one can see the densities for the
linear combinations of Hamiltonians Hk. The answer is given by formula (3.2) in [45, 50].

Another way to express the answer is to use the fermionic calculus. Due to (2.42) we
have

ϕ(z) =
...zΨ∗(z)Ψ(z)

...

Let Un(z) be the n-th density of Hamiltonian

Hn =
1

2πi

∫
z	0

Un(z)dz =
1

2πi

∫
z	0

...Ψ∗(z)z
∂

∂z
Ψ(z)

....

We start with U0(z) = ϕ(z)
z

. To calculate the first density we use Wick’s theorem

ϕ(z)U0(w) =
...zΨ∗(z)Ψ(z)

...
...Ψ∗(w)Ψ(w)

... =

=
...zΨ∗(z)Ψ(z)Ψ∗(w)Ψ(w)

... +
z

w − z
...Ψ∗(z)Ψ(w)

...

+
z

w − z
...Ψ(z)Ψ∗(w)

... +
z2

(w − z)2

Computing the integral

1

2πi

∫
w	z

dw

w − z
ϕ(z)U0(w) =

...Ψ∗(z)z
∂

∂z
Ψ(z)

... +
...Ψ(z)z

∂

∂z
Ψ∗(z)

...
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we obtain

...Ψ∗(z)z
∂

∂z
Ψ(z)

... =
1

2

 1

(2πi)

∫
w	z

dw

w − z
ϕ(z)U0(w) + z

∂

∂z
U0(z)

 .

Using the integration by part we can write the following formula for the first density

U (z)1 =
1

2

 1

2πi

∫
w	z

dw

w − z
ϕ(z)U0(w)−U0(z)

...


In general case

ϕ(z)Uk(w) =
...zΨ∗(z)Ψ(z)

...
...Ψ∗(w)

(
w
∂

∂w

)k
Ψ(w)

... =

=
...zΨ∗(z)Ψ(z)Ψ∗(w)

(
w
∂

∂w

)k
Ψ(w)

... +
z

w − z
...Ψ∗(z)

(
w
∂

∂w

)k
Ψ(w)

...

+

((
w
∂

∂w

)k
z

w − z

)
...Ψ(z)Ψ∗(w)

... +
z

(w − z)

((
w
∂

∂w

)k
z

w − z

)
.

Using integration by parts one can express linearly Hk+1 through the previous Hn and
1

2πi

∫
w	z

dw
w−zϕ(z)Uk(w). We omit the details, the calculations use the same combinatorial

relation as in Lemma 3.4. To express the answer we introduce an integral operator
K : F ⊗ C[[z, z−1]]→ F ⊗ C[[z, z−1]]

K[f(z)] =
1

2πi

∫
w	z

dw

w − z
ϕ(z)f(w),

with the kernel K(z, w) =
ϕ(z)

w − z
, f(z) ∈ F ⊗ C[[z, z−1]]. Now we formulate that Uk can

be obtained by consistent applications of operator K by the following

Proposition 3.2 The Hamiltonians can be expressed by the formula:

Hn =
1

2πi

∫
z	0

dz

(
1

n+ 1

n∑
l=0

(
n+ 1

l + 1

)
Bn−lK

l

[
ϕ(z)

z

])
.

The generating function for the Hamiltonians is given by

H (x) =
B(x)

2πix

∫
z	0

dz
exK − 1

K

[
ϕ(z)

z

]
. (3.21)

Here the operator T (x,K) = exK−1
K

means a formal power series in K:

T (x,K) = xT1 + x2T2 + x3T3 + . . .

= x+
x2

2
K +

x3

6
K2 +

x4

24
K3 + . . . ,

(3.22)
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where Tn = 1
n!
Kn−1. Note that the expression (3.21) is not normal ordered. As an example

we give the expressions for the first generators of T (x,K)
[
ϕ(z)
z

]
:

T1

[
ϕ(z)

z

]
=
ϕ(z)

z

T2

[
ϕ(z)

z

]
=

1

2πi

∫
w	z

dw

w − z
ϕ(z)

ϕ(w)

w

T3

[
ϕ(z)

z

]
=

1

(2πi)2

∫
u	z

du

u− z
ϕ(z)

∫
w	u

dw

w − u
ϕ(u)

ϕ(w)

w

3.3 Comparison of three constructions

Here we compare three formulas (3.5), (3.2) and (3.21) for the generating functions of
the Hamiltonians. All the functions have the same multiplier B(x) which produces the
Bernoulli numbers. So the three ways to express the Hamiltonians is

H (x) =
B(x)

2πix

∫
z	0

dz

z
(w(z, x)− 1) =

B(x)

2πix

∫
z	0

dz

z
(s(z, x)− 1) =

B(x)

2πix

∫
z	0

dz T (x,K)

[
ϕ(z)

z

]

where w(z, x) is given by (3.13), T (x,K) is given by (3.22) and

s(z, x) = 1 +
∑
k>0

xk

k!
sk(z)

is the exponential generating function given by the formula

s(z, x) =: exS(xz ∂
∂z

)ϕ(z) : where S(t) =
sinh( t

2
)

t
2

.

The generating functions s(z, x) and w(z, x) differ by full derivative, we demonstrate this
for the first generators:

s1(z) =: ϕ(z) : w1(z) =: ϕ(z) :
s2(z) =: ϕ(z)2 : w2(z) =: (ϕ(z)2 + ϕ′(z)) :
s3(z) =: (ϕ(z)3 + 1

4
ϕ′′(z)) : w3(z) =: (ϕ(z)3 + 3ϕ(z)ϕ′(z) + ϕ′′(z)) :

s4(z) =: (ϕ(z)4 + ϕ(z)ϕ′′(z)) : w4(z) =: (ϕ(z)4 + 6ϕ2(z)ϕ′(z) :
+4ϕ(z)ϕ′′(z) + 3(ϕ′(z)2) + ϕ′′′(z))

Here f ′(z) means z ∂
∂z
f(z). The densities sn(z) have less items, wn(z) have simple

recurrent relations (3.12). In fact formula w(z, x) gives precise expression for densities
(3.7). The last formula (3.21) does not give a normal ordering answer, but is expressed as
consistent application of simple integral operator in comparison with w(z, x) and s(z, x)
which are expressed in terms of differential operators.
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3.4 Time evolutions hierarchy

The Hamiltonians Hn commute, thus we can define an hierarchy of time evolutions defined
these commutative flows as

ϕtn(z) = [Hn, ϕ(z)].

In fact it can be calculated directly and we formulate the result by the following

Lemma 3.5 The hierarchy of time evolutions defined by commutative family (3.2) is
given by

ϕtk(z) =
1

2
B(x) :

∫
x	0

dx
k!

xk+1
sinh

(
xz

∂

∂z

)
exS(xz ∂

∂z
)ϕ(z) : . (3.23)

Proof. Due to commutator relations[
n
∂

∂pn
, pk

]
= nδn,k,

we have

[ϕ(ξ), ϕ(η)] = ξ
∂

∂ξ
δ (ξ/η) , (3.24)

where δ (ξ/η) =
∑

n
ξn

ηn
means delta-function on the circle. Using (3.24) we compute the

commutator relations with s(y, x) =: exS(xy ∂
∂y

)ϕ(y) :

[ϕ(z),

∫
y	0

dy

y
σ(y, x)] =:

x

2
sinh

(
xz

∂

∂z

)
exS(xz ∂

∂z
)ϕ(z) :, (3.25)

for the first sn(z) this gives:

[ϕ(z),

∫
y	0

dy

y
s1(y)] = 0, [ϕ(z),

∫
y	0

dy

y
s2(y)] = z

∂

∂z
ϕ(z)

[ϕ(z),

∫
y	0

dy

y
s2(y)] = z

∂

∂z

(
: ϕ2(z) :

)
[ϕ(z),

∫
y	0

dy

y
s3(y)] = z

∂

∂z

(
: ϕ3(z) : +

1

2

(
z
∂

∂z

)2

ϕ(z)

)

[ϕ(z),

∫
y	0

dy

y
s4(y)] = z

∂

∂z

(
: ϕ4(z) : +2 : ϕ(z)

(
z
∂

∂z

)2

ϕ(z) : + :

(
z
∂

∂z
ϕ(z)

)2

:

)
Up to the replacement the derivative z ∂

∂z
by ∂

∂z
the evolutions given by [ϕ(z),

∫
y	0

dy
y
sk(y)]

coincide with the hierarchy found in [45] for the additive version.
Using (3.25) and taking into account the Bernoulli factor 1

ex−1
we obtain the general

formula (3.23). �

The first examples of (3.23) are given by:

ϕt0(z) = 0, ϕt1(z) =
1

2
ϕ′(z), ϕt2(z) =: z

∂

∂z

(
1

3
ϕ2(z)− 1

2
ϕ(z)

)
:

ϕt3(z) =: z
∂

∂z

(
1

4
ϕ3(z) +

1

8

(
z
∂

∂z

)2

ϕ(z)− 1

2
ϕ2(z) +

1

4
ϕ(z)

)
:,

where f ′(z) means z ∂
∂z
f(z) . The classical limit of the hierarchy (3.23) is the dispersionless

KdV hierarchy on the circle, see [45].
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3.5 Generating functions for α = 0

To find the generating function for higher Hamiltonians in general case is an open problem.
We are able to calculate the Hamiltonians in case α = 1

β
. Denote by D′ = lim

α→0
αD, where

D is given by (2.29) and α = 1
β
, then

D′F (z) =
1

(2πi)2

∫
w	0

dw

∫
u	w

du

u− w
Ψ∗(u)

1− w
z

(Ψ(w)F (z)−Ψ(z)F (w)) .

Proposition 2.4 works for D′: the operators Hk = (ι(D′)kA) commute. Denote by W −
k (z)

the corresponding density and combine them into generating function:

W −(z, x) =
∞∑
k=0

W −
k (z)

k!
xk.

Proposition 3.3 The generating function is expressed by the formula:

W −(z, x) = e−x
(

1 +
∂

∂x

(
exp

(
xz

∂

∂z
+ xϕ−(z)

)))
.

Here ϕ−(z) is given (1.14) and exponent means a formal series

exp

(
xz

∂

∂z
+ xϕ−(z)

)
= 1 + xϕ−(z) +

x2

2

(
(ϕ−(z))2 + z

∂

∂z
ϕ−(z)

)
+ . . .

In fact this case gives a trivial answer. The densities W −
k (z) depends on ϕ−(z) and

its derivatives, so the integrals Hk = 1
2πi

∫
dz
z
W −
k (z) are polynomials in p0 in this case.
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4 Dunkl operators and representation of the Yangian

Y(gls)

1. The Yangian Y(gls). Let

R12(u− v) = 1− 1

u− v
∑
a,b

Eab ⊗ Eba ∈ End (Cs ⊗ Cs),

where Eab ∈ EndCs is the matrix unit, Eab(e
c) = δbce

a for basic vectors ec ∈ Cs. By
definition, the Yangian Y(gls) is a unital associative algebra over C with generators tab,i,
a, b = 1, ..., s, i = 0, 1, ... subject to the relations encoded in the Yang-Baxter equation

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v), (4.1)

where T1(u) = T (u)⊗ Id, T2(u) = Id⊗ T (u),

T (u) =
s∑

a,b=1

Eab ⊗ tab(u) ∈ End(Cs)⊗ Y(gls)[u
−1]

and

tab(u) = δab +
∞∑
i=0

tab,iu
−i−1, a, b = 1, . . . s (4.2)

are generating functions of tab,i. Equivalently, the defining relations (4.1) of Y(gls) are
[36]

[tab(u), tcd(v)] =
tcb(u)tad(v)− tcb(v)tad(u)

u− v
. (4.3)

The center of the Yangian is generated by coefficients of the quantum determinant [9, 36].:

q det t(u) =
∑
σ∈Sm

(−1)sgn(σ)tσ(1),1(u)tσ(2),2(u− 1)...tσ(m),m(u−m+ 1). (4.4)

2. Representation of the degenerate affine Hecke algebra. Consider a space V ⊗N

of functions in N variables with values in vector space (Cs)⊗N , here2 V = C[z] ⊗ Cs.
Denote by Kij the coordinate exchange operator of i-th and j-th variable and by Pij
the permutation of i-th and j-th tensor copy of the vector space Cs. We fix a basis
{e1, e2, . . . , es} in the Cs that we call spin space. The operators Kij of permutation of the
coordinates, Pij of permutation of the spins, and σij = KijPij of the corresponding total
action of the symmetric group SN can be expressed by the following formulas

Kij :
(
. . .⊗ (eai ⊗ zki)⊗ . . .⊗ (eaj ⊗ zkj)⊗ . . .

)
→
(
. . .⊗ (eai ⊗ zkj)⊗ . . .⊗ (eaj ⊗ zki)⊗ . . .

)
Pij :

(
. . .⊗ (eai ⊗ zki)⊗ . . .⊗ (eaj ⊗ zkj)⊗ . . .

)
→
(
. . .⊗ (eaj ⊗ zki)⊗ . . .⊗ (eai ⊗ zkj)⊗ . . .

)
σij :

(
. . .⊗ (eai ⊗ zki)⊗ . . .⊗ (eaj ⊗ zkj)⊗ . . .

)
→
(
. . .⊗ (eaj ⊗ zkj)⊗ . . .⊗ (eai ⊗ zki)⊗ . . .

)
Denote by Λs,N

± the spaces of total invariants or respectively skewinvariants of the sym-
metric group SN in the space V ⊗N ,

Λs,N
± =

(
V ⊗N

)(±)
. (4.5)

2We also use the notation V = V (z) when we need to specify the name of the variable
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The (skew)invariants are taken with respect to the diagonal action of the symmetric
groups, σij 7→ KijPij,

Next we describe the representation of the degenerate affine Hecke algebra in the
space Λs,N

± . We use the Heckman–Dunkl operators D(N)
i : V ⊗ Λs,N−1

± → V ⊗ Λs,N−1
± in

the form suggested by Polychronakos [46]:

D(N)
i = αxi

∂

∂xi
+
∑
j 6=i

xi
xi − xj

(1−Kij) . (4.6)

These operators do not change spins and satisfy the relations

KijD(N)
i = D(N)

j Kij,

[D(N)
i ,D(N)

j ] = (D(N)
j −D(N)

i )Kij,

which coincide with the relations of the degenerate affine Hecke algebra HN .
There are two natural commuting families in degenerated affine Hecke algebra HN ,

see [11]. The first one is formed by commuting operators εi
3

εi = αxi
∂

∂xi
+
∑
j<i

xj
xi − xj

(1−Kij) +
∑
i<j

xi
xi − xj

(1−Kij) + (i− 1) .

They commute, and satisfy the relations

Ki,i+1εi = εi+1Ki,i+1 − 1. (4.7)

Another family is formed by the elements

di = αxi
∂

∂xi
+
∑
j<i

xi
xi − xj

(1−Kij) +
∑
i<j

xj
xi − xj

(1−Kij) + (N − i) . (4.8)

The elements di satisfy relations

Ki,i+1di = di+1Ki,i+1 + 1 (4.9)

and are related to εi as
di = K0εN−iK0, (4.10)

where K0(xi) = xN−i represents the permutation of coordinates, associated to the longest
element of the symmetric group. Heckman operators Di, see (4.6), which we use, are
related to the above families by the relations

Di = K1iε1K1i = KiNdNKiN , Di = εi −
∑
j<i

Kij = di −
∑
j>i

Kij. (4.11)

3. Representation of the Yangian Y(gls)
Let

T (u) =
s∑

a,b=1

Eab ⊗ tab(u) ∈ End(Cs)⊗ Y(gls)[u
−1]

3here and further we omit upper index in ε
(N)
i and in d

(N)
i assuming their dependence of N variables.
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be the generating matrix of Yangian generators. Then the prescription

ξa : T (u)→ 1 +
I(01)

u− a
(4.12)

describes the evaluation homomorphism ξa : Y(gls)→ U(gls). Here I(01) =
∑s

ab=1 E
(0)
ab ⊗

E
(1)
ab . The upper index in (4.12) specifies the tensor component. Since Yangian is the

Hopf algebra and the operators εk : C[z]⊗N → C[z]⊗N commute, the assignement

T (u) 7→ TN(u) =

(
1 +

I(01)

u± ε1

)
· · ·
(

1 +
I(0n)

u± εN

)
(4.13)

determines a representation of Y(gls) in V ⊗N ' (Cs)⊗N⊗C[z1, ..., zN ]. It is known [14, 5],
that this Yangian action preserves the subspace U±s,N =

∑N−1
i=1 (si,i+1 ∓ 1)V ⊗N and thus

equips the space

Λ̃s,N
± = V ⊗N/U±s,N

of SN – (skew)coinvariants of V ⊗N with the structure of Y(gls) - module. Conjugation
of the RHS of 4.13 by means the longest element w0 = K0P0 of the symmetric group SN
gives another presentation of the Yangian action in Λ̃s,N

± :

TN(u) =

(
1 +

I(0N)

u± dN

)
· · ·
(

1 +
I(01)

u± d1

)
. (4.14)

T.Arakawa proved [5, Proposition 5], that in antisymmetric case

TN(u) ≡ 1 +
N∑
i=1

I(0i)

u−Di
mod U−s,N . (4.15)

Analogously, in the symmetric case one has

TN(u) ≡ 1 +
N∑
i=1

I(0i)

u+Di
mod U+

s,N (4.16)

Note that the latter presentations can be equivalently used in the spaces Λs,N
± of SN –

(skew)invariants, since the RHS of 4.16 commutes with the total action of the symmetric
group. In components it is given by the formula

tab(u) = δab +
∑
i

Eab,i

u±D(N)
i

, (4.17)

where Eab,i is the action of the Lie algebra gls on i-th tensor copy of V ⊗N

Eab,i

(
. . .⊗ (ec ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)

= δbc

(
. . .⊗ (ea ⊗ xk)︸ ︷︷ ︸

i

⊗ . . .
)
.
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4.1 Spin Calogero-Sutherland system

The phase space of the quantum spin Calogero-Sutherland (CS) system consists of func-
tions with values in vector space (Cs)⊗N while the dependence on spin in the Hamiltonian
given by (1.1) is implicit [23]. Using the same recipe as after formula (1.1) and choosing
the parameter α = β−1 more common in mathematical literature, we arrive after simple
rescaling to the effective Hamiltonian

H = α

N∑
i=1

(
xi

∂

∂xi

)2

+
∑
i<j

xi + xj
xi − xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
− 2

∑
i<j

xixj

(xi − xj)2 (1−Kij) ,

It acts in the space V ⊗N and we restrict this action to the space of total (skew)invariants
Λs,N
± (4.5). The Hamiltonian is expressed in terms of elements εi of the degenerate affine

Hecke algebra by the following formula:

H =
∑
i

(
ε2
i − αεi

)
,

Due to commutativity [εi, εj] = 0 the Hamiltonian H belongs to the center of degenerate
affine Hecke algebra.

The spin Calogero-Sutherland model admits Yangian symmetry, namely the action
(4.17) of the Yangian on the space Λs,N

± commutes with the Hamiltonian. Then the higher
Hamiltonians of spin CS system can be chosen as coefficients of the quantum determinant
which generate the center of the Y(gls). In fact one can choose any commutative subal-
gebra of Y(gls) including H to be the higher Hamiltonians, or the elements of center of
the degenerate affinne Hecke algebra, for example

Hn =
∑
i

εni . (4.18)

Our main goal is to construct the limit of the above Yangian action when N tends to
infinity. In particular, we get the limits of the above commuting family of Hamiltonians.

4.2 Projective properties of Yangian action

To construct the limit we need investigate the projective properties of the Yangian actions
in phase spaces Λs,N

± of CS model. For such purposes we use the multiplicative presentation
(4.13) in terms commutative family of Dunkl operators. Such an analysis was done by
D.Uglov in [57], but our description differs from that of [57].

The rings ΛN
+ (≡ Λ1,N

+ in the notations 4.5) of scalar symmetric functions form the
projective system with respect to the maps

ω+
N : ΛN

+ → ΛN−1
+ , ω+

Nf(x1, . . . , xN) = f(x1, . . . , xN−1, 0). (4.19)

Analogously, the spaces ΛN
− (≡ Λ1,N

− in our notations) of scalar skewsymmetric functions
form the projective system with respect to the maps

ω−N : ΛN
− → ΛN−1

− , ω−Nf(x1, . . . , xN) = (x1 . . . xN−1)−1f(x1, . . . , xN−1, 0). (4.20)
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The latter can be generalized to the spin case. Regard an element f of Λs,N
− as (Cs)⊗N

valued function f = f(x1, x2, . . . , xN). Set

ω−N(f) = (x1 · · ·xN−s)−1
(
1⊗(N−s) ⊗ e⊥1 ⊗ e⊥2 · · · ⊗ e⊥s

)
f(x1, . . . , xN−s, 0, . . . 0), (4.21)

which coincides with (4.20) in case s = 1. In components,

ω−N(xa11 ec1⊗ . . .⊗ x
aN
N ecN ) = δaN,0 · · · δaN−s+1,0

δcN ,s· · · δcN−s+1,1x
a1−1
1 ec1 ⊗ . . .⊗ x

aN−s−1
N−s ecN−s .

One can see that ωN is a linear map from Λs,N
− to Λs,N−s

− .
For the analysis of compatibility of transfer matrices with projection maps 4.19 and

4.20 we use Dunkl operators d
(N)
i (now we use the upper index to distinguish the number

of variables on which this operator acts).
Consider first the scalar case s = 1. Set

A
(N)
N = α

∂

∂xN
+
∑
j<N

1

xN − xj
(1−KNj),

A
(N)
i =

1

xi − xN
(1−KiN),

B
(N)
i = d

(N−1)
i + 1, i < N (4.22)

Note that operators A
(N)
i and B

(N)
i transform polynomials to polynomials and

[xN , B
(N)
i ] = 0 (4.23)

The following statement is straightforward result of the analysis of 4.8:

Lemma 4.1 The Dunkl operators d
(N)
i admit the decomposition

d
(N)
N = xNA

(N)
N , (4.24)

d
(N)
i = xNA

(N)
i +B

(N)
i = xNA

(N)
i + d

(N−1)
i + 1, i < N. (4.25)

Relations 4.14, 4.24, 4.25 and 4.22 imply the compatibility relations of transfer matrices
for N and N − 1 variables in scalar case.

Proposition 4.1 (i) In scalar symmetric case we have the following identity of operators
from Λ̃N

+ [u−1]→ Λ̃N−1
+ [u−1] :

ω+
NTN(u) =

u+ 1

u
TN−1(u+ 1)ω+

N ; (4.26)

(ii) In scalar skewsymmetric case the following identity of operators from Λ̃N
− [u−1] →

Λ̃N−1
− [u−1] holds:

ω−NTN(u) =
u+ 1

u
TN−1(u− α− 1)ω−N . (4.27)

Proof. Due to 4.24, any power of the operator d
(N)
N is divisible by xN so that the

application of ω±N to

(
1 +

I(0N)

u∓ dN

)
reduces to the multiplication by the scalar operator

60



u+ 1

u
. Next, in symmetric case for any i < N due to 4.25 and 4.23 the action of any power

of d
(N)
i modulo ideal generated by xN differs from the action of d

(N−1)
i by shift by 1. This

gives 4.26. In skewsymmetric case the action of xi
∂

∂xi
on the product (x1 · · ·xN−1)−1, see

4.21, gives additional shift by α. So we have 4.27. �
Iterating the relations 4.26 we see, that in symmetric case the renormalized transfer

matrices

T̃N(u) =
u−N
u

TN(u−N) (4.28)

are compatible with projection maps ω+
N ,

ω+
N T̃N(u) = T̃N−1(u)ω+

N . (4.29)

In antisymmetric case we can use

T̄N(u) = fN(u)TN(u+ γN), ω−N T̄N(u) = T̄N−1(u)ω−N , (4.30)

where γ = α + 1 and

fN(u) =
N∏
k=1

u+ kγ

u+ kγ + 1
. (4.31)

The statement of Proposition 4.1 can be generalized to skewsymmetric spin case.

Proposition 4.2 The following identities of operators from Cs ⊗ Λ̃s,Ns
− [u−1] → Cs ⊗

Λ̃
s,(N−1)s
− [u−1] holds:

ω−NsTNs(u) =
u+ 1

u
T(N−1)s(u− α− s)ω−Ns. (4.32)

Proof. The proof of Proposition 4.2 distinguishes from the proof of Proposition 4.1
in two details. Set

TNs(u) = T ′(u)T ′′(u),

where

T ′(u) =

(
1 +

INs

u− d(Ns)
Ns

)
· · ·

(
1 +

I(N−1)s+1

u− d(Ns)
(N−1)s+1

)
,

T ′′(u) =

(
1 +

I(N−1)s

u− d(Ns)
(N−1)s

)
· · ·

(
1 +

I1

u− d(Ns)
1

)

Then modulo the ideal generated by x(N−1)s+1, . . . , xNs the action of each element d
(Ns)
k

in T ′′(u) differs from that of d
((N−1)s)
k in T(N−1)s(u)ω−Ns by s + α. This explains the shift

of the spectral parameter. On the other hand the each d
(Ns)
k in T ′(u) can be presented in

a form

d
(Ns)
k =

s∑
j=1

x(N−1)s+jAjk, k > (N − 1)s
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where Ajk trasform polynomials to polynomials. Thus the computation of the action of
ω−NsT

′(u) reduces to the identity(
1 +

INs
u

)
· · ·
(

1 +
I(N−1)s+1

u− s+ 1

)
e1 ⊗ . . . es ≡

u+ 1

u
e1 ⊗ . . . es (4.33)

in the space
(

EndCs ⊗ Λ̃s,s
−

)
, equivalent to the computation of the q - determinant of Yan-

gian matrix [36]: We demonstrate 4.33 for s = 2, renaming tensor indices and assuming
final projection to Λ̃s,Ns

− :(
1 +

∑2
ij=1E

(0)
ij ⊗ E

(1)
ij

u

)(
1 +

∑2
kl=1E

(0)
kl ⊗ E

(2)
kl

u− 1

)
e1 ⊗ e2 ≡(

1 +
E

(0)
11 ⊗ E

(1)
11

u
+
E

(0)
22 ⊗ E

(2)
22

u− 1
+
E

(0)
21 E

(0)
12 ⊗ E

(1)
21 ⊗ E

(2)
12

u(u− 1)

)
e1 ⊗ e2 ≡(

1 +
E

(0)
11

u
+

E
(0)
22

u− 1
− E

(0)
22

u(u− 1)

)
⊗ e1 ⊗ e2 ≡(

1 +
E

(0)
11

u
+
E

(0)
22

u

)
⊗ e1 ⊗ e2 =

u+ 1

u
⊗ e1 ⊗ e2.

�
Set γ = α + s and

T̄Ns(u) = fN(u)TNs(u+ γN), (4.34)

where now

fN(u) =
N∏
k=1

u+ kγ

u+ kγ + 1
=

Γ
(
u
γ

+N + 1
)

Γ
(
u+1
γ

+ 1
)

Γ
(
u+1
γ

+N + 1
)

Γ
(
u
γ

+ 1
)

treated as asymptotical series in u−1. Then T̄Ns(u) satisfy compatibility conditions

ω−NsT̄Ns(u) = T̄(N−1)sω
−
Ns

and form a projective system of transfer matrices.
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5 Bosonic limit of spin Calogero-Sutherland system

In this section we observe the results of [27] using slightly different language.
Denote by Λ(s) the free unital associative commutative algebras generated by the

elements
pa,k, a = 1, . . . , s, k = 1, 2, . . .

The ring Λ(s) can be viewed as the ring of polysymmetric functions, that is the projec-
tive limit of polynomial functions on the variables x11, . . . x1n1 , x21, . . . x2n2 , . . . xs1, . . . xsns ,
symmetric on each group of variables xa1, . . . xana , a = 1, ..., s. Here pa,k corresponds to

the Newton sums xka1 + xka2 + · · ·. Denote by Λ̂(s) the free unital associative commutative
algebras generated by the elements

pa,k, a = 1, . . . , s, k = 0, 1, 2, . . .

We have Λ̂(s) ⊃ Λ(s). Additional ”zero modes” pa,0 will further serve to count the numbers
of variables in each group.

Let Hs be the Heisenberg algebra with generators ac,k, c = 1, . . . , s, k = 0, 1, ... and
(qc)

±1, which satisfy the relations

[ac,k, ad,l] = kδcdδk,−l, qcad,k = (ad,k + δcdδk0)qc. (5.1)

The space Λ̂(s) is a representation of the Heisenberg algebra Hs, where

ac,k 7→ pc,−k, k ≤ 0,
ac,k 7→ k ∂

∂pc,k
, k > 0,

, qc 7→ e
∂

∂pc,0 .

The unit of the ring Λ̂(s) is then identified with the vacuum vector |0〉+, so that

ac,k|0〉+ = 0, c = 1, ..., s, k > 0, qc|0〉+ = |0〉+, c = 1, ..., s. (5.2)

Denote by +〈0| the vector of the dual space, which satisfies the relations

+〈0|ac,k = 0, c = 1, ..., s, k ≤ 0. (5.3)

For c = 1, ..., s denote by ϕ−c (z) the series

ϕ−c (z) =
∑
n≤0

ac,nz
n (5.4)

and by e⊥c the linear operator Cs → C given by the relation

e⊥c (eb) = δbc.

Define linear operators

Φc(z) = exp

(∑
n>0

ac,n
n
zn

)
qc : Λ̂(s) → Λ̂(s) ⊗ C[z], c = 1, ..., s,

Φ(z) =
∑
c

Φc(z)⊗ ec : Λ̂(s) → Λ̂(s) ⊗ V,

Φ∗(z) =
∑
c

ϕ−c (z) · Φ−1
c (z)⊗ e⊥c : Λ̂(s) ⊗ V → Λ̂(s) ⊗ C[z].
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For instance, for any |v〉+ ∈ Λ̂(s)

Φ∗(z)(|v〉+ ⊗ zk ⊗ ec) = zkϕ−c (z)Φ−1
c (z)|v〉+,

where
Φ−1
c (z) = q−1

c exp
∑
n>0

−ac,n
n
zn.

For any |v〉+ ∈ Λ̂(s) consider the matrix element π̃N(|v〉+) ∈ V ⊗N ,

π̃N(|v〉+) = +〈0|(Φ(zN)⊗ 1⊗(N−1)) · · · (Φ(z2)⊗ 1)Φ(z1)|v〉+

which we shortly denote by

π̃N(|v〉+) = +〈0|Φ(zN)Φ(z2) · · ·Φ(z1)|v〉+ (5.5)

In components,

π̃N(|v〉+) =
s∑

c1,..,cN=1

+〈0|ΦcN (zN) · · ·Φc1(z1)|v〉+ · ecN ⊗ . . .⊗ ec1 .

The commutativity
Φb(z1)Φc(z2) = Φc(z2)Φb(z1) (5.6)

implies that the matrix element 5.5 belongs to the space Λs,N
+ . Indeed,

σij

(
s∑

c1,..,cN=1

+〈0|· · ·Φcj(zj) · · ·Φci(zi) · · · |v〉+ · . . .⊗ ecj ⊗ . . .⊗ eci ⊗ . . .

)
=

=
s∑

c1,..,cN=1

+〈0|· · ·Φcj(zi) · · ·Φci(zj) · · · |v〉+ · . . .⊗ eci ⊗ . . .⊗ ecj ⊗ . . . =

=
s∑

c1,..,cN=1

+〈0|· · ·Φci(zi) · · ·Φcj(zj) · · · |v〉+ · . . .⊗ ecj ⊗ . . .⊗ eci ⊗ . . .

In the last equality we change the indices of summation ci by cj.

Our goal is to pull back the Yangian action 4.17 in Λs,N
+ through the map π̃N . The

dissection of the relation 4.17 shows that the application of each Yangian generator to a
vector |v〉+ ∈ Λs,N

+ can be decomposed into several steps. First we present the symmetric

tensor |v〉+ ∈ Λs,N
+ as an element of (C[xi]⊗ Cs) ⊗ Λs,N−1

+ for each tensor component,
producing an equivariant family of vectors, which can be completely described by the
element of V ⊗ Λs,N−1

+ ∼ (C[xi]⊗ Cs) ⊗ Λs,N−1
+ — the decomposition of |v〉+ over the

first tensor component. Then we apply the power of Heckman operator D(N)
i to the i-th

vector of this equivariant family and get another equivariant family. The last step is the
symmetrization — the sum of all members of the equivariant family.

Denote by ιN : Λs,N
+ → V ⊗Λs,N−1

+ the decomposition of the symmetric tensor v over
the first tensor component,

ιN

(∑
k

f1k(z)⊗ · · · ⊗ fNk(xN)

)
=
∑
k

f1k(z)⊗ (f2k(x2)⊗ · · · ⊗ fNk(xN)) . (5.7)

Here f1k(z) and fjk(xk), j > 1 are Cs valued polynomials.
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Lemma 5.1 . We have the following equality of linear maps Λ̂(s) → Λs,N
+ :

(π̃N−1 ⊗ 1) Φ(z) = ιN π̃N . (5.8)

Proof. Applying both sides of 5.8 to a vector |v〉+ ∈ Λ̂(s) we get the tautology: both sides
are equal to

+〈0|Φ(xN)Φ(xN−1) · · ·Φ(x2)Φ(z)|v〉+.
�

For each tensor u ∈ V ⊗Λs,N−1
+ , symmetric with respect to diagonal permutations of

all tensor factor except the first, denote by EN(u) its total symmetrization

EN(u) =
N∑
j=1

σ1j(u), (5.9)

where σij = KijPij is the permutation of i-th and j-th tensor factors. On the other hand,

for each F (z) ∈ Λ̂(s) ⊗ V define the element S(F (z)) ∈ Λ̂(s) as the formal integral

S(F (z)) =
1

2πi

∮
dz

z
Φ∗(z)F (z), (5.10)

which counts zero term of the Laurent series. The following lemma establishe the map S
as the pullback of the finite symmetrization. This is the crucial point of the construction.

Lemma 5.2 For each F (z) ∈ Λ̂(s)⊗V and any natural N we have the equality of elements
of Λs,N

+ :
EN(π̃N−1 ⊗ 1)(F (z)) = π̃NS(F (z)). (5.11)

Proof. Let F (z) has the form

F (z) =
s∑
c=1

Fc(z)⊗ ec, Fc(z) ∈ Λ̂(s) ⊗ C[z].

Consider first the LHS of 5.11. This is the symmetrization 5.9 of the tensor

s∑
c1,..,cN=1

+〈0|ΦcN (xN) · · ·Φc2(x2)Fc1(x1) · ecN ⊗ . . .⊗ ec1 ,

which can be written by means of proper changes of summation indices as the sum

N∑
k=1

s∑
c1,..,cN=1

+〈0|ΦcN (xN) · · ·Φck+1
(xk+1)Φck−1

(xk−1) · · ·Φc2(x2) · · ·Fck(xk) · ecN ⊗ . . .⊗ ec1 .

Inserting in each summand the corresponding product

1 = Φck(xk)Φ
−1
ck

(xk)

and using the commutativity (5.6) we rewrite it as

N∑
k=1

s∑
c1,..,cN=1

+〈0|
N∏
j=1

Φcj(xj) · Φ−1
ck

(xk)Fck(xk) · ecN ⊗ . . .⊗ ec1 =

N∑
k=1

s∑
c1,..,cN=1

1

2πi

∫
z	xk

dz +〈0|
N∏
j=1

Φcj(xj) ·
Φ−1
ck

(z)Fck(z)

z − xk
· ecN ⊗ . . .⊗ ec1 . (5.12)
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The RHS of 5.11 is
1

2πi
+〈0|

N∏
j=1

Φ(xj)

∮
dz

z
Φ∗(z)F (z).

In components it looks as

1

2πi

s∑
a=1

s∑
c1,..,cN=1

+〈0|
N∏
j=1

Φcj(xj)

∮
dz

z
ϕ−a (z)Φ−1

a (z)Fa(z) · ecN ⊗ . . .⊗ ec1 . (5.13)

The normal ordering of the above matrix elements assumes due to 5.3 the move of all
ϕ−a (z) to the left vacuum using the relation

Φc(x)ϕ−a (z) =

(
ϕ−a (z) +

δac
1− x

z

)
Φc(x) (5.14)

which follows from 5.1. In particular, the formal integral in 5.13 can be regarded as a
contour integral, where the contour C of integration encloses all points xj. Since

+〈0|ϕ−a (z) = 0,

we arrive to the expression

N∑
k=1

s∑
c1,..,cN=1

1

2πi

∫
z	xk

+〈0|
N∏
j=1

Φcj(xj)

∮
dz

z

Φ−1
ck

(z)Fck(z)

1− xk
z

· ecN ⊗ . . .⊗ ec1 ,

which is identical to 5.12. �
We now apply statements of Lemma 5.1 and 5.2 for the construction of a pullback

of the Dunkl operator.
Let D̃ : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V be the linear map, such that for any F (z) ∈ Λ̂(s) ⊗ V

D̃F (1)(z) = αz
d

dz
F (1)(z) +

z

2πi

∮
dξ

ξ2(1− z
ξ
)
Φ∗(2)(ξ)Φ(2)(z)F (1)(ξ) (5.15)

Here the upper index (i), i = 1, 2 indicates in which tensor copy of Cs the corresponding
vector lives or an operator acts. In components,

D̃(Fa(z)⊗ ea) =

(
αz

d

dz
Fa(z) +

z

2πi

∮ s∑
c=1

dξ

ξ2(1− z
ξ
)
ϕ−c (ξ)Φ−1

c (ξ)Φc(z)Fa(ξ)

)
⊗ ea

We state that the operator D is the pullback of the equivariant family of Heckman oper-
ators D(N)

i .

Proposition 5.1 For any F (z) ∈ Λ̂(s) ⊗ V we have

(π̃N−1 ⊗ 1) D̃(F (x1)) = D(N)
1 (π̃N−1 ⊗ 1)F (x1) (5.16)

Proof. The only nontrivial part is the pullback of the difference part of the Heckman
operator. The difference part D̃(N)

1 of Heckman operator D(N)
1 in the space V (x1)⊗Λs,N−1

+ ,
where V (x1) = C[x1]⊗Cs, can be described as the composition of three operations. First
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we include into V (x1) ⊗ V (x2) ⊗ Λs,N−2
+ by means of 1 ⊗ ιN−1, then apply the operator

1−K12

x1 − x2

and finally sum up over all the variables except x1 by means of the summation

EN−1,

D̃(N)
1 = EN−1 ◦

1−K12

x1 − x2

◦ 1⊗ ιN−1

The pullback of the inclusion 1⊗ιN−1 is Φ(2)(x2) due to Lemma 5.1, the pullback of EN−1

is

∮
Φ∗(2)(x2)

dx2

x2

, the pullback of the operator
1−K12

x1 − x2

is this very operator
1−K12

x1 − x2

.

We see that the pullback of the difference operator D̃(N)
1 has the form

D̃F (1)(x1) =
x1

2πi

∮
dx2

x2

Φ∗(2)(x2)
Φ(2)(x2)F (1)(x1)−Φ(2)(x1)F (1)(x2)

x1 − x2

(5.17)

Any matrix element of the ratio inside the integral is a polynomial on x1 and x2 and
can be equally decomposed into a series either in the region |x1|< |x2| or in the region
|x1|> |x2|. In the region |x1|< |x2| in the first integral

x1

2πi

∮
dx2

x2

Φ∗(2)(x2)
Φ(2)(x2)F (1)(x1)

x1 − x2

=
s∑
c=1

x1

2πi

∮
dx2

x2

ϕ−c (x2)
F (1)(x1)

x1 − x2

we have only negative powers of x2 and this integral vanish. Thus we get (5.15). �

Let Eab ∈ EndCs, be the matrix unit, Eab(ec) = δbcea. Denote by Eab, the operator
1⊗ 1⊗ Eab : Λ̂(s) ⊗ V → Λ̂(s) ⊗ V :

EabF (z) = Fb(z)⊗ ea.

For a, b = 1, ..., s and n = 1, ... set

Tab,n =
(−1)n

2πi

∮
dz

z
Φ∗(z)EabD̃nΦ(z) (5.18)

Summarizing the statements above we get the following result [27]

Theorem 5.1 The operator Tab,n,see (5.18) is the pullback of the Yangian generator tab,n,
see (4.17), (4.2):

π̃NTab,n = tab,nπ̃N for any N ∈ N.

In particular, the operators 5.18 form level zero representation of the Yangian Y (gls) in
Λ̂(s). Here we use the property

∩N∈N Ker π̃N = 0 (5.19)

of the ring of symmetric functions which we assume to be known.

5.1 Hamiltonians

In this section we provide explicit expressions for the first few Hamiltonians constructed
by means of the procedure (5.18). We present the expressions for the first Hn =

∑
i ε
n
i in

terms of the Yangian generators tab,k in representation (4.17) :

H1 = −
∑
a

taa,1 +
1

2

∑
a,b

tab,0tba,0 −
s

2

∑
a

taa,0, (5.20)
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H2 =
∑
a

taa,2 −
∑
a,b

tab,0tba,1 + s
∑
a

taa,1 +
1

3

∑
a,b,c

tab,0tbc,0tca,0

−2s

3

∑
a,b

tab,0tba,0 +
1

6

∑
a,b

taa,0tbb,0 +
2s2 − 1

6

∑
a

taa,0,

(5.21)

where s is the number of spin variables, we mean that all summations are from 1 to s.
On the other hand, the Hamiltonians can be obtained as elements of the q-determinant
(4.4). Consider the representation of the q-determinant :

q det t(u) = 1 +
∆0

u
+

∆1

u2
+

∆2

u3
+ . . . .

The elements ∆i can be expressed in terms of tab,k. Explicit expressions for ∆0,∆1,∆2

are presented in Appendix 3. The Hamiltonians can be rewritten in the following form:

H1 = −∆1 +
1

2
∆2

0 −
1

2
∆0, (5.22)

H2 = ∆2 −∆0∆1 + ∆1 +
1

3
∆3

0 −
1

2
∆2

0 +
1

6
∆0. (5.23)

Replacing tab,k in (5.20),(5.21) by its representation (5.18) we obtain the expressions for

the pullbacks H1,H2 of the first Hamiltonians (4.18) in Λ̂(s):

Proposition 5.2 The Hamiltonians H1 and H2 are the pullbacks of the Hamiltonians
(4.18) and have the following form:

H1 = α
∑
b

∮
dξ

ξ
ϕ−b (ξ)ϕ+

b (ξ) +
1

2

(
a2

0 − a0

)
, (5.24)

H = H2 − αH1 = α2
∑
a

∮
dξ

ξ
ϕ−a (ξ)(ϕ+

a (ξ))2 + α(α− 1)
∑
a

∮
dξ

ξ
ϕ−a (ξ)(ϕ+

a (ξ))′+

−α
∑
a

∮
dξ

ξ
ϕ−a (ξ)ϕ+

a (ξ) + α
∑
a,b

∮
dξ

ξ
ϕ−a (ξ)ϕ−b (ξ)ϕ+

a (ξ)+

α
∑
a>b

∮
dξdη

ξη
ϕ−a (η)ϕ−b (ξ)

∑
k∈N

k

(
ξk

ηk
+
ηk

ξk

)
Φ−1
a (η)Φb(η)Φ−1

b (ξ)Φa(ξ).

(5.25)

Here a0 =
∑s

c=1 ac,0. The same expressions are presented in [7].

5.2 Classical limit

In this section we investigate the classical limit of the Hamiltonian (5.25). In the spinless
case it leads to the periodic Benjamin-Ono equation as we explain in section 4.1. By
introducing β = 1

α
and multiplying (5.25) by β3, we obtain:

β3H = β

∮
ξ

dξ

ξ
ϕ−a (ξ)(ϕ+

a (ξ))2 + (β − β2)

∮
ξ

dξ

ξ
ϕ−a (ξ)(ϕ+

a (ξ))′ + β2
∑
a,b

∮
η

dη

η
ϕ−a (η)ϕ−b (η)ϕ+

a (η)

−β2
∑
a

∮
dξ

ξ
ϕ−a (ξ)ϕ+

a (ξ) + β2
∑
a>b

∮
η,ξ

dξdη

ξη
ϕ−a (η)ϕ−b (ξ)

∑
k

k

(
ξk

ηk
+
ηk

ξk

)
Φba(η)Φab(ξ),

(5.26)
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where for convenience we denote Φa(x)Φ−1
b (x) by Φab(x). Introducing the classical vari-

ables αn,a, n ∈ Z with Poisson bracket relations

{αc,n, αb,m} = nδc,bδn+m,0, (5.27)

combine them into generating functions

φ−a (ξ) =
∞∑
n=0

αa,−n
ξn

, φ+
a (ξ) =

∞∑
n=1

αa,nξ
n, and φa(x) = φ+

a (x) + φ−a (x).

Then
{φ−a (x), φ+

b (y)} = δa,b
y

(1− y
x
)2
, {φ±a (x), φ±b (y)} = 0.

or
{φa(x), φb(y)} = δ′ (x/y) δa,b.

Denote by Va(ξ) the classical counterparts of the vertex operatosr Φa(ξ) satisfing the
relations

ξ
d logVa(ξ)

dξ
= φ+

a (ξ),

and

{φ−a (x),Vb(y)} = −δa,b
Vb(y)

1− y
x

, {φ+
a (x),Vb(y)} = 0. (5.28)

As before, we use the notation Vab(ξ) for Va(ξ)V−1
b (ξ). Set

H cl =

∮
ξ

dξ

ξ
φ−a (ξ)(φ+

a (ξ))2 +

∮
ξ

dξ

ξ
φ−a (ξ)(φ+

a (ξ))′ +
∑
a,b

∮
η

dη

η
φ−a (η)φ−b (η)φ+

a (η)

+
∑
a>b

∮
η,ξ

dξdη

ξη
φ−a (η)φ−b (ξ)

∑
k

k

(
ξk

ηk
+
ηk

ξk

)
V−1
ab (η)Vab(ξ). (5.29)

The operator H cl is the classical limit of the Hamiltonian (5.26) (β → 0). The rule
between the quantum commutator and Poisson bracket is β−1[ , ] → { , } and the
classical variable φa(x) correpsonds to βϕ−a (x) + ϕ+

a (x).

Proposition 5.3 4 The equations of motion determined by the Hamiltonian H cl are:

{φ+
a (x),H cl} = x

∂

∂x
(φ+

a (x))2 +

(
x
∂

∂x

)2 (
φ+
a (x)

)
+
∑
b

x
∂

∂x

(
φ−b (x)φ+

a (x)
)+

+

+
∑
b

x
∂

∂x

(
φ−b (x)φ+

b (x)
)+

+
∑
b 6=a

x
∂

∂x

(
V−1
ab (x)x

∂

∂x

((
φ−b (x)Vab(x)

)+ −
(
φ−b (x)Vab(x)

)−))+

=

x
∂

∂x
(φ+

a (x))2 +

(
x
∂

∂x

)2 (
φ+
a (x)

)
+ 2

∑
b

x
∂

∂x

(
φ−b (x)φ+

b (x)
)+

+2
∑
b 6=a

x
∂

∂x

(
V−1
ab (x)x

∂

∂x

(
φ−b (x)Vab(x)

)+
)
,

(5.30)

4For a formal series f(z) =
∑
n∈Z fnz

n we denote by f+(z) the series f+(z) =
∑
n≥1 fnz

n =
∮ zf(ξ)dξ

(1−z/ξ)ξ

and by f−(z) the series f−(z) =
∑
n≤0 fnz

n =
∮ f(ξ)dξ

(1−ξ/z)ξ .
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{φ−a (x),H cl} = 2x
∂

∂x

(
φ−a (x)φ+

a (x)
)− − (x ∂

∂x

)2 (
φ−a (x)

)
+
∑
b

x
∂

∂x

(
φ−b (x)φ−a (x)

)
+
∑
b6=a

(
φ−a (x)V−1

ab (x)x
∂

∂x

((
φ−b (x)Vab(x)

)+ −
(
φ−b (x)Vab(x)

)−))−
−
∑
b6=a

(
φ−b (x)Vab(x)x

∂

∂x

((
φ−a (x)V−1

ab (x)
)+ −

(
φ−a (x)V−1

ab (x)
)−))−

(5.31)

Remark Unlike the Yangian generators the Hamiltonian (5.25) does not contain dual zero
modes qc. The same holds for the classical limit, where we can freely use the operators
Ṽc(ξ) = exp

∑
n≥1

αc,n
n
ξn instead of Vc(ξ). The Hamiltonian and the equations of motion

do not change, while the brackets (5.28) turn into

{φ−a (x), Ṽb(y)} = −δa,b
y/xṼb(y)

1− y
x

, {φ+
a (x), Ṽb(y)} = 0.

The quantum system is integrable: it has an infinite number of integrals of motion
that can be obtained from the q-determinant of the Yangian generator function Tab(u).
It is natural to assume that the classical system is integrable as well. In particular, it
should admit a Lax pair presentation. Consider the operators L and M :

Lf = z
∂

∂z
f(z) +

∑
a

Va(z)
(
φ−a (z)V−1

a (z)f(z)
)+
,

Mf =

(
z
∂

∂z

)2

f(z) + 2
∑
b

(
φ+
b (z)φ−b (z)

)+
f(z) + 2

∑
b

Vb(z)z
∂

∂z

(
φ−b (z)V−1

b (z)f(z)
)+
.

(5.32)
They act on the space of analytic functions

f(z) = f0 + f1z + f2z
2 + . . . ,

where coefficients fi are polynomials in αc,n, where n < 0.

Proposition 5.4 The operators L and M (5.32) represent a Lax pair of the classical
system (5.29):

dL

dt
= [M,L].
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6 Fermionic limit for spin system

Let Hs
− be the algebra of s free fermion fields. It is generated by the elements ψnc and

ψ∗nc, where n ∈ Z and c = 1, . . . , s, which subject the relations

ψanψbm + ψbmψan = 0, ψ∗anψ
∗
bm + ψ∗bmψ

∗
an = 0,

ψanψ
∗
bm + ψ∗bmψan = δabδn,−m.

(6.1)

The algebra Hs
− is graded with

degψcn = degψ∗cn = −n. (6.2)

The algebra Hs
− admits a family of commuting automorphisms Q̂c, c = 1, ..., s given by

the relations
Q̂c(ψbn) = ψb,n−δbc , Q̂c(ψ

∗
bn) = ψ∗b,n+δbc

. (6.3)

Let F s be the left representations of Hs
−, generated by the vacuum state |0〉, and F s∗ be

the right Hs
− -module generated by the vacuume state 〈0|, such that

〈0|0〉 = 1

and

ψcn|0〉 = ψ∗cm|0〉 = 0 c = 1, ..., s, n ≥ 0, m > 0,

〈0|ψcn = 〈0|ψ∗cm|= 0, c = 1, ..., s, n < 0, m ≤ 0.
(6.4)

We use the following fermionic normal ordering rule:

...ψ∗cnψdm
... =

{
ψ∗cnψdm, m ≥ 0

−ψdmψ∗cn, m < 0
. (6.5)

It is compatible with relations (6.4).
The automorphisms 6.3 define invertible linear maps Qc and Q−1

c of the Fock space
to itself which are compatible with these automorphisms and anticommute for different
indices c1 and c2:

Q−1
c (x|0〉) = Q̂−1

c (x)ψ∗c,0|0〉, Qc(x|0〉) = Q̂c(x)ψc,−1|0〉,
〈0|Q−1

c = 〈0|ψ∗c,1, 〈0|Qc = 〈0|ψc,0,
(6.6)

so that for any x ∈ Hs
− and |v〉 ∈ F s we have

Q̂c(x)|v〉 = QcxQ
−1
c |v〉. (6.7)

Indeed, for |v〉 = y|0〉 the RHS of (6.7) equals

QcxQ
−1
c |v〉 = QcxQ

−1
c (y|0〉) = Qc

(
xQ̂−1

c (y)ψ∗c,0|0〉
)

= Q̂c(x)yψ∗c,1ψc,−1|0〉 =

= Q̂c(x)y
(
1− ψc,−1ψ

∗
c,1

)
|0〉 = Q̂c(x)y|0〉 = Q̂c(x)|v〉.

In the following we use the distinguished product of s such maps and automorphisms

Q̂ := Q̂s · · · Q̂1, Q = Qs · · ·Q1. (6.8)
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In particular,

〈0|Q−1 = 〈0|ψ∗s,1 · · ·ψ∗1,1, Q−1|0〉 = ψ∗s,0 · · ·ψ∗1,0|0〉,
〈0|Q = 〈0|ψs,0 · · ·ψ1,0, Q|0〉 = ψs,−1 · · ·ψ1,−1|0〉.

(6.9)

Denote by Hs
−(z) the space of Laurent series∑

n∈Z

hnz
n ∈ Hs

−(z), (6.10)

where each coefficient hn is a series

hn =
∑
k

a11
k +

∑
kl

a21
k a

22
l +

∑
klm

a31
k a

32
l a

33
m + . . .

where aijk are either ψcn or ψ∗cn for some c and n, such that the matrix coefficient 〈ξ|hn|v〉
is well defined for any ξ ∈ F s∗ and v ∈ F s. 5 We can assume for instance all series hn to

be fermionic normal ordered according to 6.5, hn =
...hn

.... We also use the notation F s(z)
for the space F s ⊗ C[z, z−1]].

Let Ψc(z) and Ψ∗c(z) be the following elements of Hs
−(z),

Ψc(z) =
∑
n∈Z

ψcnz
n, Ψ∗c(z) =

∑
n∈Z

ψ∗cnz
n−1. (6.11)

The field Ψc(z) is of total degree zero, and the field Ψ∗c(z) is of total degree −1, once we
set deg z = 1. The relations 6.4 imply the commutativity

Ψc(x)Ψd(y) + Ψd(y)Ψc(x) = Ψ∗c(x)Ψ∗d(y) + Ψ∗d(y)Ψ∗c(x) = 0 (6.12)

and normal ordering rules

Ψc(x)Ψd(y) =
...Ψc(x)Ψd(y)

..., Ψ∗c(x)Ψ∗d(y) =
...Ψ∗c(x)Ψ∗d(y)

...,

Ψc(x)Ψ∗d(y) =
...Ψc(x)Ψ∗d(y)

... +
δcd
y − x

, x < y,

Ψ∗c(x)Ψd(y) =
...Ψ∗c(x)Ψd(y)

... +
δcd
y − x

x < y.

(6.13)

which imply the relation

1

2πi

∫
z	w

Ψc(w)Ψ∗c(z)dz =
1

2πi

∫
z	w

Ψ∗c(w)Ψc(z)dz = 1. (6.14)

One can also see that

Q̂ (Ψc(z)) = zΨc(z), Q̂ (Ψ∗c(z)) = z−1Ψ∗c(z), c = 1, ..., s.

Boson–fermion correspondence says that the space F s is a representation of the affine Lie
algebra ĝls of level one. The degree −n generators Eab,n of ĝls, where a, b = 1, ..., s and
n ∈ Z satisfy the relations

[Eab,n, Ecd,m] = δbcEad,n+m − δadEcb,n+m + nδn,−mδadδbc

5For instance the monomial zn
(∑

k>0 ψ
∗
ckψc,−k

)
/∈ Hs−(z).
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They are presented in EndF s by operators

Eab,n =
∑
k+l=n

...ψ∗alψbk
..., (6.15)

where
...

... means fermionic normal ordering (6.5). The generators

ab,n := Ebb,n

form the Heisenberg algebra H[s],

[ab,n, ac,m] = nδb,cδn,−m

so that
ac,k|0〉 = 0, 〈0|ac,l = 0, c = 1, ..., s, k ≥ 0, l ≤ 0.

On the other side of boson–fermion correspondence we have the relations:

Ψc(z) = zac,0 exp

(∑
n<0

ac,n
n
zn

)
exp

(∑
n>0

ac,n
n
zn

)
Qc

Ψ∗c(z) = z−ac,0 exp

(
−
∑
n<0

ac,n
n
zn

)
exp

(
−
∑
n>0

ac,n
n
zn

)
Q−1
c .

The element

a0 =
s∑
c=1

ac,0 =
s∑
c=1

∑
k∈Z

...ψ∗ckψc,−k
... (6.16)

is central in ĝls and satisfies the relation

Qa0Q
−1 = a0 + s.

The Fock space F s admits the orthogonal decomposition into direct sum of eigenspaces
of operator a0,

F s = ⊕N∈ZF sN , where F sN = {|v〉 ∈ F s : a0|v〉 = N |v〉}. (6.17)

The relation 6.17 implies that
QF sN = F sN−s. (6.18)

In the following we use the notation τN for the projection of F s to F sN parallel to other
eigenspaces of a0:

τN |v〉) = δN,k · |v〉 for |v〉 ∈ F sk . (6.19)

Let Ψ(z) and Ψ∗(z) be the following elements of Hs
−(z) ⊗ Cs and Hs

−(z) ⊗ Cs∗

correspondingly,

Ψ(z) =
∑
c

Ψc(z)⊗ ec Ψ∗(z) =
∑
c

Ψ∗c(z)⊗ e⊥c . (6.20)

The field Ψ(z) defines the map from F s to F s(z)⊗ Cs,

Ψ(z)|v〉 =
∑
c

Ψc(z)|v〉 ⊗ ec,
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which we denote by the same symbol Ψ(z). The field Ψ∗(w) defines a map fromHs
−(z)⊗Cs

to Hs
−(z, w),

Ψ∗(w)

(∑
c

Fc(z)⊗ ec

)
=
∑
c

Ψ∗c(w)Fc(z),

where Hs
−(z, w) is defined in the same way as Hs

−(z) (6.10). Here we regard e⊥c as the
linear map e⊥c : Cs → C, such that e⊥c (ed) = δcd.

For any |v〉 ∈ F s consider the matrix element

πN(|v〉) = 〈0|(Ψ(zN)⊗ 1⊗(N−1)) · · · (Ψ(z2)⊗ 1)Ψ(z1)|v〉,

which we shortly denote by

πN(|v〉) = 〈0|Ψ(zN)Ψ(z2) · · ·Ψ(z1)|v〉. (6.21)

In components,

πN(|v〉) =
s∑

c1,..,cN=1

〈0|ΨcN (zN) · · ·Ψc1(z1)|v〉 · ec1 ⊗ . . .⊗ ecN .

The commutativity 6.12 and the properties of the left vacuum 6.4 imply that the matrix
element 6.21 belongs to the space Λs,N

− . Note that the map πN factors through the
projection τN (6.19),

πN = πNτN

and equals zero for any F sM with M 6= N .
We are going now to construct the pullback through the maps πN of the components

of the Yangian generators.
Denote by ιN : Λs,N

− → Cs[z] ⊗ Λs,N−1
− the decomposition of the antisymmetric

tensor v over the first tensor component, given by the relation 5.7. Denote by πN−1,1 :(
Hs
−(z)⊗ Cs

)
⊗F s → C[x2, ..., xN , z, z

−1]⊗ Cs⊗N the map defined as

πN−1,1(F (z)⊗ |v〉) = 〈0|Ψ(xN) · · ·Ψ(x2)F (z)|v〉.

Lemma 6.1 . We have the following equality of linear maps F s → Λs,N
− :

πN−1,1Ψ(z) = ιNπN . (6.22)

Proof. This is again a tautology like in the proof of Lemma 5.1. �
For each polynomial tensor Cs[z] ∈ V ⊗ Λs,N−1

− , antisymmetric with respect to diag-
onal permutations of all tensor factor except the first, denote by AN(u) its total (nonnor-
malized) antisymmetrization

AN(u) = u−
N∑
j=2

σ1j(u). (6.23)

On the other hand, for each F (z) ∈ Hs
−(z)⊗Cs define the element A(F (z)) ∈ Hs

− as the
integral

A(F (z)) =
1

(2πi)2

∫
z	0

dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
. (6.24)
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Remark. The integral over z is actually formal. The form 6.24 indicates the following.
Assume that F (z) depends on a parameter w. Then the contour C of integration over z
should not enclose the point z = w. One can always assume the condition |w|> |z|.

Let an element F (z) ∈ Hs
−(z)⊗ Cs satisfies the following conditions:

(i) πN,1(F (z)⊗ |v〉) is a polynomial on z for any N ∈ N, v ∈ F s (6.25)

(ii) degF (z) = 0 (6.26)

Here we assume that deg ec = 0 for any ec ∈ Cs.
The following lemma establishes the map A as the pullback of the finite antisym-

metrization. This is the crucial point of the construction.

Lemma 6.2 For each F (z) ∈ Hs
−(z) ⊗ Cs satisfying the conditions 6.25 and 6.26, any

|v〉 ∈ F s and any natural N we have the equality of elements of Λs,N
− :

AN πN−1,1(F (z)⊗ |v〉) = πNA(F (z))|v〉. (6.27)

Proof. Let F (z) has the form

F (z) =
s∑
c=1

Fc(z)⊗ ec, Fc(z) ∈ Hs
−(z)

Consider first the LHS of (6.27). This is the antisymetrization 6.23 of the tensor

s∑
c1,..,cN=1

〈0|ΨcN (xN) · · ·Ψc2(x2)Fc1(x1)|v〉 · ec1 ⊗ . . .⊗ ecN .

which can be written by means of proper changes of summation indices as the sum

N∑
k=1

(−1)k+1

s∑
c1,..,cN=1

〈0|ΨcN (xN) · · ·Ψck+1
(xk+1)Ψck−1

(xk−1) · · ·Ψc1(x1)Fck(xk)|v〉

· ec1 ⊗ . . .⊗ ecN .

Using the relation ∫
z	xk

dz
Fck(z)

xk − z
= −Fck(xk),

we rewrite the LHS of (6.27) as

N∑
k=1

(−1)k
s∑

c1,..,cN=1

〈0|ΨcN (xN) · · ·Ψck+1
(xk+1)Ψck−1

(xk−1) · · ·Ψc1(x1)·

1

2πi

∫
z	xk

dz
Fck(z)

xk − z
|v〉 · ec1 ⊗ . . .⊗ ecN .

Using (6.14), we insert the integral:

−1

2πi

∫
u	xk

Ψck(xk)Ψ
∗
u(u)du = 1
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into each summand of the k-th group. Then the LHS of (6.27) takes the form

− 1

(2πi)2

N∑
k=1

s∑
c1,..,cN=1

∫
z	xk

dz

∫
u	xk

|z−xk|�|u−xk|

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

xk − z
|v〉 · ec1⊗. . .⊗ ecN =

− 1

(2πi)2

N∑
k=1

s∑
c1,..,cN=1

∫
z	xk

dz

∫
u	xk

|z−xk|�|u−xk|

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉 · ec1⊗. . .⊗ ecN .

(6.28)

Now in each summand we move the contour of integration for z close to the point xk,
crossing the singularity at z = u. Then the integral in every such summand transforms
into the sum of two integrals,

−
∫

z	xk

dz

∫
u	xk

|z−xk|�|u−xk|

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉 =

−
∫

z	xk

dz

∫
u	xk

|u−xk|�|z−xk|

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉+ (6.29)

∫
z	xk

dz

∫
u	z

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉

In the first integral, see the middle line of 6.29, after the change of the order of integration
we observe its vanishing due to condition (i) of 6.25: there is no singularity of the integral
at any point z = xj. We now conclude that the LHS of 6.27 equals to the double integral

1

(2πi)2

N∑
k=1

s∑
c1,..,cN=1

∫
z	xk

dz

∫
u	z

du〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉 · ec1⊗ . . .⊗ ecN

or

1

(2πi)2

N∑
k=1

s∑
c1,..,cN=1

∫
C

dz

∫
u	z

du〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)|Fck(z)

u− z
|v〉 · ec1⊗ . . .⊗ ecN , (6.30)

where the contour C encloses all the points xk but does not enclose zero.

On the other hand, the RHS of 6.27,

〈0| 1

(2πi)2

∏
N≥i≥1

Ψ(xi)

∮
dz

∫
u	z

du
Ψ∗(u)F (z)

u− z
|v〉

in components looks like

1

(2πi)2

N∑
k=1

s∑
c1,..,cN=1

〈0|
∏

N≥i≥1

Ψci(xi)

∮
dz

∫
u	z

du
Ψ∗ck(u)Fck(z)

u− z
|v〉 · ec1 ⊗ . . .⊗ ecN .
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The region of analyticity of any matrix coefficient 〈ξ|
∏

N≥i≥1 Ψci(xi)Ψ
∗
ck

(u)F (z)|v〉 is
0 < |xN |< |xN−1|< . . . < |x1|< |u|< |z| so the integral over z can be replaced by the
contour integral over the contour enclosing all xk and zero. Deforming this contour we
see that the RHS of 6.27 equals to the sum 6.28 plus the integral which enclose zero and
not the points xk. To prove the equality 6.27 it is sufficient to verify that each integral∫

z	0

dz

∫
u	z

du 〈0|
∏

N≥i≥1

Ψci(xi)
Ψ∗ck(u)Fck(z)

u− z
|v〉 (6.31)

vanishes. In the latter integral all singularities at the diagonals z = xi and u = xi are
out of the domain of integration. Thus the vanishing of these integrals is equivalent to
vanishing of the vector valued integral∫

z	0

dz

∫
u	z

du 〈0|
Ψ∗ck(u)Fck(z)

u− z
. (6.32)

The domain of analyticity of the expression Ψ∗ck(u)Fck(z) is |u|< |z| and all the singular-
ities are poles of finite order on the diagonal z = u, so that the relation

(z − u)NΨ∗ck(u)Fck(z) = (z − u)NFck(z)Ψ∗ck(u) (6.33)

holds for sufficiently big N , where the sign is chosen according to parity of the field Fck(z).
The relation (6.33) implies that the analytic continuation of Ψ∗ck(u)Fck(z) to the region
|u|> |z| is ±Fck(z)Ψ∗ck(u). By definition 6.4 of the vacuum state and the related rules of
the normal ordering (6.5) the integral 6.32 can be formally rewritten as∫

z	0

dz〈0|
(
Ψ∗ck,−(z)Fck(z)± Fck(z)Ψ∗ck,+(z)

)
, (6.34)

where the sign depends on the parity of Fck(z) =
∑

n∈Z fnz
n and

Ψ∗ck,−(z) =
∑
n≤0

ψ∗ck,nz
n−1, Ψ∗ck,+(z) =

∑
n>0

ψ∗ck,nz
n−1.

In Fourier modes 6.32 looks as∑
n≤0

ψ∗ck,nf−n ±
∑
n>0

f−nψ
∗
ck,n

.

The first sum vanishes due to 6.4. By assumption, degFck(z) = 0 thus deg fn = −n. We
then see that in the second term all fn have positive degree and if we assume them to be
normal ordered they contain in each summand either ψan or ψ∗bn with n < 0 at their left
end. Thus 〈0|f−n = 0 for n > 0 and the integral 6.32 vanishes. �

Define an operator D : Hs
−(z)⊗ Cs → Hs

−(z)⊗ Cs by the relation

DF (z) = αz
d

dz
F (z)+

z

(2πi)2

∫
w	0
|w|<|z|

dw

∫
u	w

du Ψ∗(2)(u)
Ψ(2)(w)F (1)(z)−Ψ(2)(z)F (1)(w)

(u− w)(z − w)
.

(6.35)
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Here upper indices (1) and (2) indicate tensor components where corresponding operators
act. In components,

DFc(z)⊗ ec = αz
d

dz
Fc(z)⊗ ec+

z

(2πi)2

s∑
b=1

∫
w	0
|w|<|z|

dw

∫
u	w

du Ψ∗b(u)
Ψb(w)Fc(z)−Ψb(z)Fc(w)

(u− w)(z − w)
⊗ ec.

By means of Lemma 6.2 we now can identify the operator D as a pullback of the
equivariant family of Heckman operators D(N)

i acting in the space of partially antisym-
metric tensors

Proposition 6.1 For any F (z) ∈ Hs
−(z) ⊗ Cs satisfying the condition 6.25 and 6.26,

|v〉 ∈ F s and N ∈ N we have the equality

πN−1,1(DF (x1)⊗ |v〉) = D(N)
1 πN−1,1(F (x1)⊗ |v〉). (6.36)

Proof. First we note that once the element F (z) ∈ Hs
−(z) ⊗ Cs satisfies the conditions

6.25 and 6.26, the same is true for the divided difference

Ψ(2)(w)F (1)(z)−Ψ(2)(z)F (1)(w)

z − w
.

The property 6.25 is valid because both the differential and difference derivatives preserve
the polynomial property. The property 6.26 is evident: the difference derivatives are
homogeneous of degree zero. We thus can use Lemma 6.2. Now the rest of the proof is
identical to the proof of Proposition 5.1. �

Note that the application of the operator D to some F (z) ∈ Hs
−(z) ⊗ Cs, which

satisfies the conditions 6.25 and 6.26, preserves these conditions by the same reasons
of homogeneity and preservation of polynomial spaces by both difference and differen-
tial derivatives. This gives rise to the formulas for pullback of sum of powers of Dunkl
operators.

Let Eab ∈ EndCs, be the matrix unit, Eab(ec) = δbcea. Denote by Eab, the operator
1⊗ Eab : Hs

−(z)⊗ Cs → Hs
−(z)⊗ Cs:

EabF (z) = Fb(z)⊗ ea.

For a, b = 1, ..., s and n = 1, ... define the element Tab,n ∈ Hs
− by the relation

Tab,n = AEabDnΨ(z) =
1

2πi

∫
z	0

dz Tab,n. (6.37)

Here Tab,n is the n-th order density defined by the formula:

Tab,n =
1

2πi

∫
u	z

du
Ψ∗(u)EabDnΨ(z)

u− z
. (6.38)

In Appendix we give expressions for the first densities for n = 0, 1, 2 in terms of normal
ordering fermionic fields and in terms of generators of the affine Lie algebra ĝls , see (6.15).

Summarizing the statements above we establish the operator Tab,n as the pullback of

the Yangian generator tab,n in Λs,N
− .
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Proposition 6.2 For any |v〉 ∈ F s and N ∈ N we have the equality

πN(Tab,n|v〉) = tab,nπN |v〉.

We now reformulate projective properties of the Yangian action in the phase space of
finite-dimensional CS system, see Proposition 4.2, in terms of the constructed operators
in the Fock space.

Lemma 6.3 For any |v〉 ∈ F s we have the equality

πN(Q|v〉) = ω−N+s · πN+s(|v〉). (6.39)

Proof. The LHS of 6.39 reads

πN(Q|v〉) =〈0|Ψ(xN) · · ·Ψ(x2)Ψ(x1)Q|v〉 =

(x1 · · ·xN)−1 · 〈0|QΨ(xN) · · ·Ψ(x2)Ψ(x1)|v〉 =

(x1 · · · xN)−1 · 〈0|ψs,0 · · ·ψ1,0Ψ(xN) · · ·Ψ(x2)Ψ(x1)|v〉.

The last line is precisely the RHS of 6.39. Indeed,

ω−N+s · πN+s(|v〉) = ω−N+s ·
s∑

c1,..,cN+s=1

〈0|ΨcN+s
(xN+s) · · ·Ψc2(x2)Ψc1(x1)|v〉 · ec1 ⊗ . . .⊗ ecN+s

= (x1 · · ·xN)−1 ·
s∑

c1,..,cN=1

〈0|ψs,0 · · ·ψ1,0ΨcN (xN) · · ·Ψc2(x2)Ψc1(x1)|v〉 · ec1 ⊗ . . .⊗ ecN .

�
Denote by T(u) the generating matrix of operators Tab,n

T(u) =
s∑

a,b=1

Eab ⊗ Tab(u) ∈ End(Cs)⊗Hs
−[u−1],

where
Tab(u) = δab +

∑
n≥0

Tab,n u
−n.

Proposition 4.2 and Lemma 6.3 imply

Corollary 6.1 The following identity holds

QT(u)Q−1 =
u+ 1

u
T(u− α− s) (6.40)

The equality 6.40 can be regarded as a recurrence relations which expresses each Tab,n via
AdQ(Tab,k) for k < n. In particular, this means that

(AdQ−1)n+2(Tab,n) = 0 (6.41)

and thus any operator A = Tab,n can be presented as a polynomial of degree n+ 1

A = A0 + a0A1 + . . .+ an+1
0 An+1, QAjQ

−1 = Aj, (6.42)

where each Aj is an element of H of zero charge. In its turn, the presentation (6.42)
implies
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Theorem 6.1 The operators Tab,n satisfy Yangian relations (4.3).

In particular, the coefficients of the quantum determinant q det T(u) form a commutative
family which can be regarded as the limits of the higher Hamiltonians of CS system.
Indeed, due 6.42, each Yangian relation is polynomial over a0 and thus it is enough to
verify it on subspaces F sN , which are eigenspaces of a0 with eigenvalue N for N big enough.
But here in the projection πN we deal with polynomials of any desirable degree where the
relation becomes nontrivial.

Analogously to finite-dimensional case, see 4.30, the transfer matrix T(u) can be
renormalized by means of central operator a0 in such a way that the new transfer matrix
will commute with Q and thus acts in equal way in each sector F sN of the Fock space.
Here we set

T̄(u) = f(u, a0) T
(
u+ a0

γ

s

)
, (6.43)

where γ = α + s and

f(u, b) =
Γ
(
u
γ

+ b
s

+ 1
)

Γ
(
u+1
γ

+ 1
)

Γ
(
u+1
γ

+ b
s

+ 1
)

Γ
(
u
γ

+ 1
) . (6.44)

Comments. Denis Uglov presented two construction of the Yangian action in fermionic
space F s, starting from Yangian action in the phase space of fermionic Spin CS system.
The paper [57] deals with projective type construction while the work [58] develops an
inductive limit approach. Our paper has a close connection with [57].

Initial data of the present work and that of [57] are the same: finite-dimensional
representations of Yangians realized via polynomial representations of degenerated affine
Hecke algebra. In this setting D. Uglov uses projective properties of these action and
renormalize the transfer matrices of Yangian action in order to form the projective sys-
tem. He identifies zero charge subspace of F s with the projective limit of Λs,n

− and defines
the Yangian action on F s0 via this identification. The action is extended to other sectors
by means of natural identifications of these sectors with F s0 . The resulting Yangian action
is given by implicit formula, analogous (but not the same!) to 4.34, and actually coin-
cides with renormalized finite-dimensional action on stable wedge. Using this description
and representation theory of degenerate affine Hecke algebra, D. Uglov suggested precise
decomposition of the Fock space into direct sum of Yangian irreducibles.

Our construction can be regarded as a free field counterpart of Uglov investigations.
However, there are certain differences in two approaches. First, we use different projec-
tions from the Fock space to spin CS phase space Λs,N

− . They differ by the power of Q.

Namely, Uglov projection π̃Ns : F s0 → Λs,Ns
− can be expressed via 6.21 by the relation

π̃Ns = πNsQ
−N .

The use of our projections allows to lift the initial action to the whole Fock space without
renormalization. However, after renormalization 6.43 both actions should coincide.

Second, in his normalization procedure [57, Proposition 10.2] Uglov lost the shift of
spectral parameter which led to disagreement in final results. This disagreement does
not affect the decomposition into Yangian irreducibles, but changes the parameters of
irreducibles. Namely, one should twist Uglov irreducible components by certain automor-
phisms of the Yangian. Surely, after the mentioned changes Uglov decomposition can be
equally used in our interpretation of the model.
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Conclusion

In this work the limits of the Calogero-Sutherland system when the number of parti-
cles N tends to infinity were investigated. We studied the bosonic and fermionic limit
corresponding to the symmetric and antisymmetric wave functions of the system.

For the fermionic limit of the scalar system, we derived a limit expression for the
Dunkl operator via free fermionic fields, which allows us to present the construction of
commuting Hamiltonians in the Fock space. In the case of the value of the coupling
constant β = 0, we have presented an explicit formula for the generating function of
Hamiltonians that differs from the previously known ones. This result may find some
applications in such areas as knot theory and combinatorics of Hurwitz numbers. In
case of arbitrary value of coupling constant to find the precise generating function of
Hamiltonians is an open problem.

For spin system we realized the bosonic and fermionic limit in a multicomponent
Fock space. We introduced the maps to finite system and construct the pullback of finite
Dunkl operators in terms of vertex operators in bosonic case and in terms of free fermion
fields in fermionic case. We constructed the corresponding Yangian representation in the
Fock space, which may have nontrivial applications in the representation theory.
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Appendix

Here we present the expressions for the first densities Tab,n(z) (6.38) n = 0, 1, 2 for the
Yangian generators. There will be given two types of expressions for each density, the
first answer is a normal ordered combination of fermionic fields Ψc(z), Ψ∗d(z), the second

is not normal ordered, it is given in terms the affine Lie algebra ĝls generators.
Now we introduce several notations. Denote by T klab (z) a coefficient of αl in Tab,k+l(z):

Tab,n(z) =
n∑
l=0

αlT n−l,lab (z).

Denote by Eab(z) a generating functions for the elements of the affine Lie algebra ĝls :

Eab(z) =
∑
n

Eab,nz
n =

...zΨ∗a(z)Ψb(z)
....

For a formal series f(z) =
∑

n∈Z fnz
n we denote by f(z)± the series

f(z)+ =
∑
n≥0

fnz
n =

∫
u	0
|u|�|z|

du
f(u)

u− z
, f(z)− =

∑
n<0

fnz
n =

∫
u	0
|u|�|z|

du
f(u)

z − u
.

For n = 0 we simply have

Tab,0(z) = T 0,0
ab (z) =

...Ψ∗a(z)Ψb(z)
... =

1

z
Eab(z). (6.1)

For n = 1

Tab,1(z) = αT 0,1
ab (z) + T 1,0

ab (z).

We distinguish the answers for diagonal Taa,n(z) and nondiagonal part Tab,n(z) , where
a 6= b. Firstly we present the expressions for nondiagonal elements a 6= b as normal
ordered combination of fermionic fields:

T 0,1
ab (z) =

...Ψ∗a(z)z
∂

∂z
Ψb(z)

...,

T 1,0
ab (z) =

...
s∑
c=1

zΨ∗a(z)Ψb(z) (Ψ∗c(z)Ψc(z))− +
s∑
c=1

zΨ∗a(z)Ψc(z) (Ψ∗c(z)Ψb(z))−

+ (s+ 1) Ψ∗a(z)

(
z
∂

∂z
Ψb(z)

)
−
−Ψb(z)

(
z
∂

∂z
Ψ∗a(z)

)
+

....

The bosonic answer has the recurrent form, we express it from T 0,0
ab (z) (6.1):

T 0,1
ab (z) =

∫
w	z

dw

(w − z)
Eaa(z)T 0,0

ab (w),
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T 1,0
ab (z) =

s∑
c=1

∫
w	0
|w|�|z|

dw

(z − w)
Eac(z)T 0,0

cb (w) +
s∑
c=1

∫
w	0
|w|�|z|

zdw

w(z − w)
T 0,0
ab (z)Ecc(w)−

−
∫
w	z

zdw

w(w − z)
T 0,0
ab (z)Eaa(w).

For diagonal elements in case n = 1 we present the answers in the same way, firstly as a
normal ordered combination of fermionic fields:

T 0,1
aa (z) =

...Ψ∗a(z)z
∂

∂z
Ψa(z)

...,

T 1,0
aa (z) =

...
s∑
b=1

zΨ∗a(z)Ψa(z) (Ψ∗b(z)Ψb(z))− +
s∑
b=1

zΨ∗a(z)Ψb(z) (Ψ∗b(z)Ψa(z))−

−
s∑
b=1

Ψb(z)

(
z
∂

∂z
Ψ∗b(z)

)
+

+ (s+ 1) Ψ∗a(z)

(
z
∂

∂z
Ψa(z)

)
−
−Ψa(z)

(
z
∂

∂z
Ψ∗a(z)

)
+

....

Then the recurrent answer from previous densities in terms the affine Lie algebra ĝls
generators:

T 0,1
aa (z) =

1

2

∫
w	z

dw

(w − z)
Eaa(z)T 0,0

aa (w) +
1

2

∫
w	z

zdw

(w − z)2
T 0,0
aa (w),

T 1,0
aa (z) =

s∑
c=1

∫
w	0
|w|�|z|

dw

(z − w)
Eac(z)T 0,0

ca (w) +
s∑
c=1

∫
w	0
|w|�|z|

zdw

w(z − w)
T 0,0
aa (z)Ecc(w)−

−
s∑
c=1

∫
w	z

dw

(w − z)
Ecc(z)T 0,0

cc (w)− T 0,1
cc (z)

+

∫
w	z

zdw

(w − z)2
T 0,0
aa (w)− T 0,1

aa (z).

For n = 2
Tab,2(z) = α2T 0,2

ab (z) + αT 1,1
ab (z) + T 2,0

ab (z)

We split T 1,1
ab (z) into two summands :

T 1,1
ab (z) = (T 1,1

ab )′(z) + (T 1,1
ab )′′(z).

Here (T 1,1
ab )′(z) means that firstly we apply z ∂

∂z
and then the difference part of the Dunkl

operator, (T 1,1
ab )′′(z) backwards.

T 0,2
ab (z) =

...Ψ∗a(z)

(
z
∂

∂z

)2

Ψb(z)
...

(T 1,1
ab )′(z) =

...
s∑
c=1

zΨ∗a(z)

(
z
∂

∂z
Ψb(z)

)
(Ψ∗c(z)Ψc(z))− +

s∑
c=1

zΨ∗a(z)Ψc(z)

(
Ψ∗c(z)z

∂

∂z
Ψb(z)

)
−

+

(
s+

1

2

)
Ψ∗a(z)

((
z
∂

∂z

)2

Ψb(z)

)
−

−
(
z
∂

∂z
Ψb(z)

)(
z
∂

∂z
Ψ∗a(z)

)
+

− 1

2
Ψ∗a(z)

(
z
∂

∂z
Ψb(z)

)
−

...
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(T 1,1
ab )′′(z) =

...
s∑
c=1

Ψ∗a(z)z
∂

∂z

(
zΨc(z) (Ψ∗c(z)Ψb(z))−

)
+

s∑
c=1

Ψ∗a(z)z
∂

∂z

(
zΨb(z) (Ψ∗c(z)Ψc(z))−

)
+ (s+ 1) Ψ∗a(z)

((
z
∂

∂z

)2

Ψb(z)

)
−

− 1

2
Ψb(z)

(
z
∂

∂z
Ψ∗a(z)

)
+

−
(
z
∂

∂z
Ψb(z)

)(
z
∂

∂z
Ψ∗a(z)

)
+

− 1

2
Ψb(z)

((
z
∂

∂z

)2

Ψ∗a(z)

)
+

...

The recurrent formula from previous densities in terms the affine Lie algebra ĝls genera-
tors:

T 0,2
ab (z) =

∫
w	z

dw

(w − z)
Eaa(z)T 0,1

ab (w)

(T 1,1
ab )′(z) =

s∑
c=1

∫
w	0
|w|�|z|

dw

(z − w)
Eac(z)T 0,1

cb (w) +
s∑
c=1

∫
w	0
|w|�|z|

zdw

w(z − w)
T 0,1
ab (z)Ecc(w)−

−
∫
w	z

zdw

w(w − z)
T 0,1
ab (z)Eaa(w)

(T 1,1
ab )′′(z) =

∫
w	z

dw

(w − z)
Eaa(z)T 1,0

ab (w) +

∫
w	0
|w|�|z|

zdw

w(z − w)

(
T 0,0
aa (z) + z

∂

∂z
T 0,0
aa (z)− T 0,1

aa (z)

)
Eab(w)−

−
∫
w	0
|w|�|z|

zdw

w(z − w)2
Eaa(z)Eab(w)−

∫
w	z

zdw

w(w − z)
T 0,1
ab (z)Eaa(w)

+

∫
w	z

zdw

(w − z)3
Eab(w)−

∫
w	0
|w|�|z|

zdw

(z − w)3
Eab(w)− 1

2
T 0,2
ab (z)− 1

2
T 0,1
ab (z)

For diagonal elements in case n = 2 we have more complicated formulas:

T 0,2
aa (z) =

...Ψ∗a(z)

(
z
∂

∂z

)2

Ψa(z)
...

(T 1,1
aa )′(z) =

...
s∑
c=1

zΨ∗a(z)

(
z
∂

∂z
Ψa(z)

)
(Ψ∗c(z)Ψc(z))− +

s∑
c=1

zΨ∗a(z)Ψc(z)

(
Ψ∗c(z)z

∂

∂z
Ψa(z)

)
−

+

(
s+

1

2

)
Ψ∗a(z)

((
z
∂

∂z

)2

Ψa(z)

)
−

+
1

2

s∑
c=1

Ψc(z)

((
z
∂

∂z

)2

Ψ∗c(z)

)
+

+
1

2

s∑
c=1

Ψc(z)

(
z
∂

∂z
Ψ∗c(z)

)
+

−
(
z
∂

∂z
Ψa(z)

)(
z
∂

∂z
Ψ∗a(z)

)
+

...
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(T 1,1
aa )′′(z) =

...
s∑
b=1

Ψ∗a(z)z
∂

∂z

(
zΨa(z) (Ψ∗b(z)Ψb(z))−

)
+

s∑
b=1

Ψ∗a(z)z
∂

∂z

(
zΨb(z) (Ψ∗b(z)Ψa(z))−

)
− 1

2

s∑
b=1

Ψb(z)

(
z
∂

∂z
Ψ∗b(z)

)
+

− 1

2

s∑
b=1

Ψb(z)

((
z
∂

∂z

)2

Ψ∗b(z)

)
+

−
s∑
b=1

(
z
∂

∂z
Ψb(z)

)(
z
∂

∂z
Ψ∗b(z)

)
+

+ (s+ 1) Ψ∗a(z)

((
z
∂

∂z

)2

Ψa(z)

)
−

− 1

2
Ψa(z)

(
z
∂

∂z
Ψ∗a(z)

)
+

− 1

2
Ψa(z)

((
z
∂

∂z

)2

Ψ∗a(z)

)
+

−
(
z
∂

∂z
Ψa(z)

)(
z
∂

∂z
Ψ∗a(z)

)
+

...

T 0,2
aa (z) =

2

3

∫
w	z

dw

(w − z)
Eaa(z)T 0,1

aa (w)−2

3

∫
w	z

zdw

(w − z)3
Eaa(w)+

2

3

∫
w	z

zdw

(w − z)2
T 0,1
aa (w)+

1

3
T 0,1
aa (z)

(T 1,1
aa )′(z) =

s∑
c=1

∫
w	0
|w|�|z|

dw

(z − w)
Eac(z)T 0,1

ca (w) +
s∑
c=1

∫
w	0
|w|�|z|

zdw

w(z − w)
T 0,1
aa (z)Ecc(w)−

−
s∑
c=1

∫
w	z

dw

(w − z)
Ecc(z)T 0,1

cc (w)− T 0,2
cc (z)

+

∫
w	z

zdw

(w − z)2
T 0,1
aa (w)− T 0,2

aa (z)

(T 1,1
aa )′′(z) =

∫
w	z

dw

(w − z)
Eaa(z)T 1,0

aa (w)+

+
s∑
b=1

∫
w	0
|w|�|z|

zdw

w(z − w)

(
T 0,0
aa (z) + z

∂

∂z
T 0,0
aa (z)− T 0,1

aa (z)

)
Ebb(w)−

−
s∑
b=1

∫
w	0
|w|�|z|

zdw

w(z − w)2
Eaa(z)Ebb(w)−

s∑
b=1

∫
w	0
|w|�|z|

zdw

(z − w)3
Ebb(w)

+

∫
w	0
|w|�|z|

zdw

w(z − w)

(
T 0,0
aa (z) + z

∂

∂z
T 0,0
aa (z)− T 0,1

aa (z)

)
Eaa(w)

−
∫
w	0
|w|�|z|

zdw

w(z − w)2
Eaa(z)Eaa(w)−

∫
w	0
|w|�|z|

zdw

(z − w)3
Eaa(w)

+
s∑
b=1

∫
w	z

dw

(w − z)

(
T 0,1
aa (z)− z ∂

∂z
T 0,0
aa (z)

)
Ebb(w)

85



+
s∑
b=1

∫
w	z

zdw

(w − z)3
Ebb(w)−

s∑
b=1

∫
w	z

dw

(w − z)2
Eaa(z)Ebb(w)

+ s

∫
w	z

zdw

(w − z)2
T 0,1
aa (w)−

∫
w	z

zdw

(w − z)3
Eaa(w)

− s

2
T 0,2
aa (z) +

s

2
T 0,1
aa (z)

+ 2

∫
w	z

zdw

(w − z)3
Eaa(w)− 2

∫
w	z

zdw

(w − z)2
T 0,1
aa (w) +

∫
w	z

zdw

w(w − z)2
Eaa(w) + T 0,2

aa (z).

The density T 2,0
11 (z) has a cumbersome form and we do not present it here. In scalar case

(s = 1) the matrix coefficient T 2,0
11 is a polynomial in zero mode of the scalar bosonic field:

T 2,0
11 =

1

6

(
2a3

0 − 3a2
0 + a0

)
.

In scalar case the same is for higher orders: the matrix coefficient T n,011 is a polynomial of
degree (n+ 1) in zero mode of the scalar bosonic field [35].
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