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Introduction

Historical review

The system of one-dimensional particles with inverse-square pairwise interactions has
played a great role in mathematical and theoretical physics for the past 40 years. This
model arises and has different applications in various fields of physics, such as condensed
matter physics, spin chains, gauge theory, and string theory and constitutes the main
example of integrable and solvable many-body system. In the literature, it is labeled by
the names of F. Calogero, B. Sutherland and Y. Moser. The system of identical particles
scattering on the line with inverse-square potential was as first introduced by F. Calogero
in 1971 [10]. Its Hamiltonian is

P; g
H = = + —_—
PO D Dy rnr
where we use the standard notations of momentums and coordinates. Here the particle
masses are scaled to unity , g is the coupling constant. We consider a periodic version

of the system (for example, with the period 27), assuming that infinitely many images of
particles interact, then the two-body potential becomes

N g g
V(z) = = :
(z) n:zoo (r +2mn)?  2sin§

This was introduced by B. Sutherland in 1971 [55]. It is convenient to use the following
parametrization of the coupling constant:

g=pBB-1).

We consider a system of N identical particles on a circle of length L, which we will call
the quantum Calogero-Sutherland system, with the following Hamiltonian

= xm) 0 St

i=1 i<j

which is the main point of our research. It is natural to consider periodic wave functions
of the system

¢(QI77%+L77CIN):¢(C]177QW7QN)

The function

.
¢o(q) = Golq1, -y qn) = H|SIH(Z(%’ - Qj))|ﬂ
i<j
represents the vacuum state with eigenenergy [23]

Ey = (78/L)> N(N? —1)/3.

Applying the transformation ¢o(q) ' Hego(q) and passing to the collective variables x; =
2miq; . . . .
e T , we arrive to the effective Hamiltonian

N 2
0 T + 1 0 0
o= — L (e — ) 2
i1 (%8:1:2) +ﬁzl’l—l’j (%8:171 x]al']) (O )




The Hamiltonian (0.2) is a differential-difference operator. It turns out that there is
a family of commuting differential-difference operators that includes (0.2). This family
can be constructed using the Heckman-Dunkl operators [15, 17]. We give the expressions
of them in the form suggested in [46]:

0 T
DM — 4. L1 - K 0.3
; T xﬁﬁ; _xj( i) (0.3)

8 Z;

where Kj;; is a permutation operator. Symmetric polynomials in DZ(N) commute [17].

Denote by
H™ = Res, (Z <D§N))k> , (0.4)

where Res; means a restriction on the space of symmetric polynomials. The operators
H ,QN) can be chosen as the higher Hamiltonians of the Calogero-Sutherland model. In
particular, H = HQ(N).

The eigenfunctions of commuting operators H. IgN) are symmetric polynomials in N
variables with the parameter o = %3, which are called Jack polynomials [21]. They are
parametrized by the partitions and constitute a generalization of Schur polynomials and
a special case of symmetric Macdonald polynomials with two parameters ¢, [30, 31].
Putting ¢,t — 1 and assuming that ¢ = t*, we obtain Jack polynomials. It is known a
family of difference operators for which Macdonald polynomials are eigenfunctions [30]. In
the case of Jack polynomials these operators were introduced by J. Sekiguchi [51] and A.
Debiard [13]. The Sekiguchi-Debiard operators are degeneration of Macdonald operators.
In fact, they do not coincide with the operators given in (0.4), but can be expressed as a
polynomial in (0.4).

The construction of Macdonald polynomials and corresponding commuting difference
operators is also known for an arbitrary root system [12, 32, 33]. A generalization of Jack
polynomials for arbitrary root systems was introduced by G. Heckman and E. Opdam
and is called Jacobi polynomials associated with the root system [18, 19, 20, 44]. Jack
polynomials is associated with the root system A,,. We consider only this case. We remark
that the Calogero- Sutherland system is an integrable system corresponding to the root
system Ay_1, following M. Olshanetsky and A. Perelomov [42].

Naturally, there is a question about the description of the model where the number
of particles N tends to infinity. In papers [4, 6, 7, 22, 46] from the 80’s to early 90’s
there were presented the explicit answers for the limit of the second Hamiltonian (0.2)
in the bosonic Fock space. About 20 years later, the general construction of commuting
Hamiltonians in the bosonic Fock space was presented by M. Nazarov and E. Sklyanin [40]
and independently by A. Veselov and A. Sergeev [52]. Developing Macdonald’s ideas, M.
Nazarov and E. Sklyanin in [40] found the expressions for Sekiguchi-Debyard operators in
the limit where N tends to infinity. The main tool was the theory of symmetric functions.
Symmetric functions can be considered as symmetric polynomials in infinite number of
variables. The zero sector of the bosonic Fock space can be identified with the ring of
symmetric functions, which is formally defined as the projective limit of rings of symmetric
polynomials. Thus there was constructed a family of operators whose eigenfunctions are
Jack symmetric functions.

In [39],[52] another construction of the limit for Calogero-Sutherland model in the
bosonic Fock space was presented. The main idea was to use the family of Dunkl operators



(0.3) as a quantum L-operator of the system. For Calogero systems the L-operator was
already known [37] and was similar to the action of the family of Dunkl operators, written
in matrix form in a suitable basis. Thus a precise construction of higher Hamiltonians in
the bosonic Fock space was suggested and this allowed to show that the limiting system
is integrable. The resulting system can be considered as a quantum analogue of the
integrable hierarchy of the Benjamin-Ono equation [1, 47].

For special value of the coupling constant the symmetric Jack functions become
Schur functions , and the Benjamin-Ono equation respectively degenerates into the dis-
persionless KAV equation (or the so-called Burger’s equation). The exact construction of
commuting Hamiltonians of the quantum dispersionless KdV equation can be obtained
directly from the boson-fermion correspondence and was presented by A. Pogrebkov in
[45]. Hamiltonians can be obtained recurrently [45] or in terms of the generating function
[41, 50].

We consider the spin Calogero-Sutherland systems which are generalizations of these
models, where extra degrees of freedom are involved, which are usually interpreted as
spin variables. Integrability of the Calogero system has been studied in numerous papers,
see for example [29]. The Calogero-Sutherland spin system is superintegrable due to
N. Reshetikhin [48, 49]. In this paper, we will use a special case of the spin model
corresponding to the root system Ay and the representation of the higher weight of sly.
In this case, the numerator of the potential of Hamiltonian (0.1) will be 5(5 — K;;), where
K;; is the coordinate exchange operator of i-th and j-th particles, and the dependence on
spin is implicit.

The spin CS system has the Yangian symmetry, in other words the Hamiltonians
of the Calogero-Sutherland system commute with the Yangian action, moreover they are
expressed through the central elements of the Yangian elements. The presence of Yangian
symmetry is directly related to the Dunkl operators. They satisfy the relations of the
degenerate affine Hecke algebra, which in turn allows us to construct the representation
of the Yangian Y(gl,) according to the general construction [5, 14]. Thus, the higher
Hamiltonians of the system can be chosen as the center of the Yangian, namely, as the
coefficients of the quantum determinant.

In the symmetric case the limit expression N for the second Hamiltonian in collective
variables was obtained in [7]. The antisymmetric limit of the spin system was studied by
D. Uglov in [56, 58]. D. Uglov studied the projective properties of the Yangian action for
a finite system, namely, he presented a formula of renornalization of the transfer matrix
of the Yangian in order form a projective system and the action was stabilized. Also D.
Uglov decomposed the corresponding Fock space into irreducible components with respect
to the Yangian action and found the spectrum of Hamiltonians.

State of the problem and main results

The main purpose of this work is to study the limits of the Calogero-Sutherland system
in the scalar and spin cases when the number of particles /N tends to infinity. In each case
we study the bosonic and fermionic limit corresponding to the symmetric and antisym-
metric wave functions of the system. Here we list the results, further we give the precise
formulations.

For the fermionic limit of the scalar system, we derive a limit expression for the
Dunkl operator via free fermionic fields, see Theorem 2.1, which allows us to present



the construction of commuting Hamiltonians in the Fock space, see Proposition 2.4. In
the case of the value of the coupling constant § = 0, we get an explicit formula for the
generating function of Hamiltonians that differs from the previously known ones. The first
one is given as a bosonic normal ordered answer, see Proposition 3.1. The second formula
is given in terms of simple integral operator, but is not normal ordered, see Proposition
3.2.

The spin CS system has the Yangian symmetries. In fact the action of Yangian
generators as well as Hamiltonians in scalar case do not form a projective system. So
we study the projective properties of the Yangian action and formulate the results in
Proposition 4.1 and Proposition 4.2.

For spin system we realize the bosonic and fermionic limit in a multicomponent Fock
space. We introduce the maps to finite system and construct the pullback of finite Dunkl
operators in terms of vertex operators in bosonic case and in terms of free fermion fields
in fermionic case, see Proposition 5.1 and Proposition 6.1. The limit of Dunkl opera-
tor allows to construct the corresponding Yangian representation in the Fock space, see
Theorem 5.1 and Theorem 6.1. In the bosonic case we investigate the classical limit, see
Propositions 5.3 and 5.4.

1. Bosonic limit of Calogero-Sutherland system. In the first section we review
recent results [39, 52| concerning the bosonic limit of Calogero-Sutherland system and
rewrite them in a language of vertex operators. We use the notations differing from
[39, 52] but more convinient for our purpose and clearifying the further exposition.

We begin with the description of the finite CS system restricted on the ring of sym-
metric polynomials in NV variables. The main idea is to regard the equivariant Heckman-
Dunkl operators as a quantum L-operator acting on the space of polynomial functions
of one variable with coefficients being symmetric polynomials of the remaining N — 1
variables. Clearly, the Dunkl operator DZ(N itself preserves the symmetry involving all
variables other than z; and therefore it acts on the space Af’i of functions symmetric in
all variables except z;.

The action of the higher Hamiltonian (0.4) can be obtained by the following proce-

dure: we start with a symmetric polynomial f(xy,...,xy) € Af and construct a vector
of its N copies. The action the k-th power of Dunkl operator (ZN?Z(N))’“ provides a family
of N equivariant functions: fi(xy1,...;x;...2y5) = (DZ(N))kf(xl, .. zy) € AV such that
o fi(xy,...;2;...xy) is a polynomial symmetric in all variables except x;
[ ]
Kijfi = 1. (0.5)
For g(z1,...;24...2N) € Af’i we introduce an operator of its symmetrization
N
Eyg= Z Kijg.
j=1

Then we apply Ey to a function f; from an equivariant family (0.5):

N
En fi = Z g
j=1

7



This procedure can be illustrated by the following matrix formula:

N
o) L1 T
n 48y B s
N i=2 v
H,=(1,1,...) —pz xmﬁﬁz - £l
i#2 T2 % .
f

which resembles the Lax matrix (see [37]) for CS system.

We reformulate the procedure in terms of the Newton polynomials p,iN) = bk
and express the Heckman-Dunkl operators via finite analogous V, (z), V| (z) of the vertex
operators ®(z), ®7!(z) and the negative part of derivative of the bosonic field ¢~ (z),

given by the formulas:
) = exp Zz 0 (2) = Z& :
8pn A
n>0 n>0

To do that we present a symmetric polynomial in the following form

N N
FEN p8 N

The operator V+ (x;) changes each occurrence of a Newton sum pk by pk b4 zk s
Vi(x)f € A " is a Taylor decomposmon of polynomial f by variable x;.

To symmetrize the function F(z;, {p" "}) € A" we use the the formal intagral

F({pa}) 74 £ 27O (VLOF) (6 n.))

which counts the residue at infinity. The operator V| (f) changes each occurrence of a

Newton sum p,g ) by p — &%, Then the integral ¢~ (&) changes each item &* by

N
.

~ Insection 1.3 we realize the bosonic limit in the extended ring of symmetric functions

A. Let A = Alpo] be a ring symmetric functions [30] extended by a free variable py.The

space A is an irreducible representation of the Heisenberg algebra H, generated by the
0

elements p, and — and can be regarded as a polynomial version of the Fock space. It

n
contains the vacuum vector |0);, such that

0) =0.1,....
3pn|> e

The dual vacuum vector (0| satisfies the condition
+<O|pn:0, n:O,l,....

We define a projection 7y : A — AY for an element |v); € A as the following matrix
element:

TNy = {0[@(zn) ... B(22)D(21)[v)+-

8



This projection maps pi to the corresponding Newton polynomial in N variables:

N

- N

7r]\;:pk—>p,(C ):fo, po — N.
i=1

We define a linear map S : A ® C[z] — A as

SF({p.}) = %§¢>(£)¢1(£)PTE7{pn})

and prove that the map & is the pullback of the finite symmetrization Ey under the map
ﬁN:
En ﬁ-Nle(ZG {pn}> = %NS(F(Z> {pn})
We present the main result of this section:
Theorem 1.1 The operator D : A ® Clz] - A ® C|z| given by

¢ 1

DUF( b)) = 25 e () + 62 § B0 (OVEF(E (o))
3

1s a limit of Dunkl operators DI(N).

In other words, the operator D is a pullback of lNDZ(N) under the map 7y. This result
was formulated before in [39, 52] in other terms, here we present the formula in the lan-
guage of vertex operators. This theorem implies the following

Proposition 1.2 The operators 56, = SD*®(z) : A — A,
A A2 Aok 25 Ao S A,
generate a commutative family of Hamiltonians of the limiting system [39, 52].

In section 1.4 we show that in classical limit this system becomes the Benjamin-Ono
hierarchy following [39].

2. Fermionic limit of CS system.

The second section is devoted to the fermionic limit of Calogero-Sutherland model,
we describe the results of paper [25]. In this case the particles are fermions and we deal
with the antisymmetric wave functions.

As well as in bosonic case we begin with the description of the CS system restricted
to the space of antisymmetric polynomials A" in terms of Heckman-Dunkl operators. We
then express Heckman-Dunkl operators via finite analogs V_(2)V,.(z) and V' (2)V](z) of
vertex operators W(z) and W*(z), where

U(2) = 2P exp (— Z %) exp (Z z”%)

n>0

U*(2) = 2™ exp (Z %) exp (— Zz"%) :

n>0



To do this we present any antisymmetric polynomial in N variables as

N
H(Ii_l’j)f(pg );pé )7]9;(3 )7"'>

i>j
where p,(CN) = a% + ...+ a%. The operator V,(x;) changes each occurrence of p,(CN) by
p,(CN_l) + 2%, while the operator

-1)
V_(21) = 27 exp ( pn )
n>0

is the multiplication by [[,(z; — x;), so that the application of V_(z1)Vy(z;) to an
antisymmetric polynomial g(xy,...,zy) is just its Taylor decomposition with respect to
x1. On the other hand, the operators V' (2)V} (z) are used for the total antisymmetrization
of the functions, antisymmetric with respect to all variables except one. This is done in
Section 2.1.

In the next subsection we realize a limit in the polynomial Fock space A. To each
vector [v) of A we attach a family {7y (v)} of antisymmentric functions of N variables,
given by matrix elements

(V) = (0¥ (zy) - V(w1 |v). (0.6)

The goal is to construct operators in the space A which are compatible with finite CS
Hamiltonians with respect to evaluation maps (0.6). This is done following E.Sklyanin
ideology [39, 27]: we introduce an auxillary space U C Clz, z7]] ® A and its evaluations
to the spaces of polynomials antisymmetric with respect to all variables except one. We
present operators, acting in U which are compatible with the above evaluation maps.

The key point of the construction is an operator of integral average A : C[z, 1 ®

— A, which is the limiting analogue of finite antisymmetrization. Let F (z) €
271 ® A, then we define AF € A by the following formula:

“@ L

In Lemma 2.3 we show that A: U — A is a pullback of finite antisymmetrization.
Further we define an operator D : Clz,27']] ® A — Cl[z,27!]] ® A by the following
formula

D) = () A | du [ B s )P E) — )P w),

A
Clz,

and prove

Theorem 2.1 The operator D acting on the auzillary space U is a pullback of Heckman—

Dunkl operators DZ(N) under the map Ty .

The Hamiltonians of finite system with N particles in antisymmetric case can be
expressed by meas of Dunkl operators analogously (0.4):

AN = Res_ (Z <D§N))k> |

10



where Res means the restriction on the space of antysymmetric polynomials AY. We
cogls;cruct the limiting Hamiltonians #; which are the pullbacks of finite Hamiltonians
(N

H,

We define the operators A R
A, =AD"V (z) 1 A — A (0.7)

and formulate

Proposition 2.4 The operators 74, generate a commutative family of operators in the
space A.

The constructed Hamiltonians form a commutative family of operators in the space
A. Moreover, they commute inside the Heisenberg algebra and thus can be used as well
in its other representations, for instance, in the bosonic Fock space. We can define the
projection 7y : F — AY similar to (0.6)

(V) = (0¥ (zy) - W(z1)[v).

In fact it is nonzero only on the N-th sector Fx of the Fock space. Now the con-
structed Hamiltonians .77, are compatible with respect to the maps 7y, the commutativity
NG = H ,S,N)WN is nontrivial on the N-th sector Fn. We reformulate the same construc-
tion in the fermionic Fock space represented as space of semi-infinite wedges, we define
the projection analogous to my which acts as a “cutting” of the wedge. We discuss this
in Section 2.3.

3. Generating functions of commuting Hamiltonians for some special val-
ues of coupling constant.

In this section we consider the special case § = 0 of antisymmetric limit. (we use the
notations for Hamiltonians as in previous section, where we assume § = 0). In this case
the Hamiltonians (0.7) can be simply expressed as operators on the fermionic Fock space

A= 3G
k

The boson-fermion correspondence allows to express .7, in the bosonic Fock space, it was
done by A. Pogrebkov [45] for the additive version and later by P. Rossi [50] on the circle.

Here we derive the two formulas for the densities for .77, that was not known before,
we present the results given in [35]. In case 8 = 0 the Dunkl operator is simply the

differential operator (2%) and the Hamiltonians (0.7) are expressed from the densities
S = - L,.(2) which is given by

2w Jz00
1 Uru) [ 0\"

_ k
These Hamiltonians are the pullbacks of simple differential operators H ,EN) = ZN (x 0 ) :

i=1 \ "z,

We derive first formula by calculating the integral in variable u in #}(z) using the bosonic

11



calculus. This gives the following answer

Proposition 3.1 The exponential generating function # (z, z) for densities #(z) is given
by the formula

: exp (:1: (2% + 90(2))) -1
e? —1

W(zw) =Y () =

and satisfies the differential equation

oW (x,z)

Z@W(L z)  eW(zz)—p(2)
ox '

0z et —1

=) (z,z): +

Here the exponent of operator means the formal series acting on the identity:

exp <x <z% + g&(z))) = 1tap(a) + o (goz(z) + z%gp(z)) +o

The second formula can be obtained by fermionic calculus and expressed in terms of
integral operator. We introduce an integral operator K : F@C[[z, 27!]] = F®C|[z, 27]],
given by the formula

KU =55 [ ae@)fe)

here f(z) € F @ C|[[z,27!]]. Then we present the explicit formulas for the Hamiltonians
by the following

Proposition 3.2 The exponential generating function for the Hamiltonians is given by

A (x) = m/d;ﬂ;{q {wf)]

200

The Hamiltonians can be expressed by the formula:

1 1 &K(/n+l ©(2)
H,=— | d B, K' .
27m'/ z<n+1z(l+1> : [ z
250 1=0
Here B,, mean the Bernoulli numbers and the operator ‘3“;{_1 means a formal power series
in K: « ) 5 A
e —1 T x x
=1+ K+ —K+_-K*+....
% T+ 5 + 6 + 21 +

We note that the answer for the Hamiltonians given in Proposition 3.2 is not normal
ordered.

The Hamiltonians 7%, commute, thus we can derive an hierarchy of time evolutions
defined by these commutative flows as

i (2) = [0, 0(2)].

12



We derive the explicit formulas and formulate the result by the following

Lemma 3.5 The hierarchy of time evolutions defined by commutative family (3.2) is
given by

o1, (2) = §B(x) : / d:vam sinh (:pz&) e?3@zg2)e)

zO0

The classical limit of this hierarchy is the dispersionless KAV hierarchy on the circle [45].

4. Dunkl operators and representation of the Yangian Y (gl,).
The phase space of the quantum spin Calogero-Sutherland (CS) system consists of func-
tions with values in vector space (CS)®N while the dependence on spin in the Hamiltonian

N

_ BB — Ki)
HCS__Z(an) Zsm (qi -

—q;)’

is implicit [23]. Here K;; is the coordinate exchange operator of particles ¢ and j. After
conjugating by the function [, _;|sin(g; — q;)|? which represents the degenerated vacuum
state, and passing to the exponential variables x; = €?™% and the parameter o = S~}
more common in mathematical literature, we arrive after simple rescaling to the effective
Hamiltonian

H_O‘g: i 2+in+xj 0 2 —22—%% (1- K;)
— - Zaxi oy Ti — Tj 8ZEZ ]al,j ij)

2
i<j (wz - ij)

which we restrict to the spaces Aft’N of total invariants or respectively skewinvariants of
the symmetric group Sy in the space V&V,

Here V = C[z] ® C*. The (skew)invariants are taken with respect to the diagonal action
of the symmetric groups, o;; — K;;P;;, where K;; is as above and P;; is the permutation
of i-th and j-th tensor copy of the vector space C°.

Further we use the Heckman-Dunkl operators D) : V @ A3V ™' = Vo AN ! in
the form suggested by Polychronakos [46]:

(N) _
D, a:cz —|—le_$] (1—-Ki).

These operators satisfy the relations

K, DN =DMV K,

15

D™ DM = (P — D)

[ J J 2 ijs

which coincide with the relations of the degenerate affine Hecke algebra Hy. By Drin-
feld duality [14], this representation of degenerate affine Hecke algebra transforms to the
representation of the Yangian Y(gl,) in A%, see [5, 28]

abz
_6ab+zuiDN) (0.8)

13



Here E,;; describes the action of gl on ¢-th tensor component,

Eab7i<...®(ec®mk)®...> :5b0<...®(e“®xk)®...>.

and top(u), a,b=1,...s,

tab(u) = (Sab -+ Z tab,i’u,iiil
=0

are generating functions of the generators ¢,,; of the Yangian Y(gl,). The defining rela-
tions of Y(gl,) are [36]

tcb(u)tad(v) - tcb(v)tad(u) '

[tab(u); tcd(v)] = U —v

Then the higher Hamiltonians of spin CS system can be chosen as coefficients of the
quantum determinant

qdet t(u) = Z (—1)85]”(”)750(1),1(u)tg(g),g(u — 1)...tg(m),m(u —m+ 1).
TESm
which generate the center of the Y(gl,) [9, 36].

Our main goal is to construct the limit of the above Yangian action when N tends to
infinity. In particular, we get the limits of the above commuting family of Hamiltonians.
To construct the limit we need investigate the projective properties of the Yangian actions
in phase spaces Aft’N of CS model. Such an analysis was done by D.Uglov in [57], but our
description differs from that of [57].

The rings Af of scalar symmetric functions form the projective system with respect
to the maps

wj\', : Af — Af‘l, w;\rff(xl, cooxy) = f(z1,...,oNn_1,0).

Analogously, the spaces AY of scalar skewsymmetric functions form the projective system
with respect to the maps

w;, : A]_V — A]_V_l, w;,f(:vl, R 7I’N) = ($1 . ..I’N_l)_lf([l'}l, R ,QTN_l,O).

Contrary to the ring of symmetric functions, the space A is not the projective limit
of the spaces of (skew)symmetric functions due to the presence of zero mode py. On the
other hand, CS Hamiltonians Hj themselves in both symmetric and skewsymmetric cases
do not form a projective family since they do not respect natural projections

whHNY £ EN Wt
Let )
T(u) =Y Eu ®ty(u) € End(C*) ® Y(gl,)[u]
a,b=1

be the generating matrix of Yangian generators. Denote by T (u) the transfer matrix
corresponding to the representation (0.8) , here index N denotes the number of parti-
cles. In scalar case (s = 1) the transfer matrix Ty (u) is the generating function of the

Hamiltonians ) ) )
_ (N) (N) (N)
TN(u)_1+aHO +§H1 +$H2 +...

14



We formulate the projective property of Ty (u) in scalar symmetric and skewsymmetric
case

Proposition 4.1 (i) In scalar symmetric case we have the following identity of operators
from AN [u™] — AYHut]

u—+1
wiTn(u) =

TN—l (U + 1)0)]—(},

(ii) In scalar skewsymmetric case the following identity of operators from AN[u™'] —
AV u™Y holds:
u+1

wyTn(u) = Ty_1(u—a—1wy.
Iterating the relations from Proposition 4.1 we see, that the renormalized transfer matrices
Ty(u) and Tx(u) in symmetric and skewsymmetric case

N
~ u— N _ u+ ky
Ty(u) = — —Ti(u=N) TN(U)ITN(“+7N)Hu+k7+1’
k=1

are compatible with projection maps wy, and wy, respectively
whiTn(u) = Ty 1 (u)wh  wyTn(u) = Ty (u)wy

Here v = a+ 1. The coefficients of renormalized transfer matrices can be chosen as a
projective system of Hamiltonians of CS system.
The statement of Proposition 4.1 can be generalized to skewsymmetric spin case.

Regard an element f of A*" as (CS)®N valued function f = f(x1,x2,...,2xyx). We define

a linear map wy : A*" — A*V7® by the formula
wy(f) = (1 an_s) (1" Vel @ey - @er) flar,...,on-s,0,...0)

and formulate the following

Proposition 4.2 The following identities of operators from C* ® AiNs[u_l] - C*®
AW 1,-1] holds:

_ u+1 _
Wy Ins(u) = " Tin—1)s(u — a — s)wy,-

Set v = a + s and
u+ ky

N
| ey

k=1

treated as asymptotical series in u~!. Then T, (u) satisfy compatibility conditions
s Tvs (1) = Tov-nswy,

and form a projective system of transfer matrices.
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5. Bosonic limit of spin Calogero-Sutherland system.
In this section we observe the results of [27] using slightly different language.

Let H*® be the Heisenberg algebra with generators a.x,c=1,...,s, k=0,1,... and
(¢.)*", which satisfy the relations

(@ s Aa) = kOedOk —1, qetar = (agk + 6cadko)qe-

Let A® be a representation of the Heisenberg algebra H® with the vacuum vector |0),
such that

acil0)y =0, c=1,...,5, k>0, 7|0)y = [0)y, c=1,...,s.
Denote by (0| the vector of the dual space, which satisfies the relations
{0lack =0, c=1,..,s, kK<O0.
For any [v); € A® consider the matrix element 7y (|v)y) € VEN

Tn([0)g) = 0@ (2n) @ (2n-1) - - P(21)|v)y,

where
a N A
) = cen _n : (s) (s) 1
c(z) = exp (Z o z )qc AY — A¥ @ Clz], c=1,..s,
n>0
(ﬁ(Z) = E q)c(z) X e A(S) N ]\(5) ® V,

are the vertex operators and by ®(z;) we shortly denote ®(z;,) ® 1971, We show that
7n(Jv)y) € ASY is symmetric invariant.

Our goal is to pull back the Yangian action (0.8) in Ai’N through the map 7n. We
use the similar procedure as in scalar case and decompose the application of each Yangian
generator (0.8) to a vector |w); € A% into several steps. First we present the symmetric
tensor |w); € A" as an element of (Clz;] ® C*) @ A5 ™! for each tensor component,
producing an equivariant family of vectors, then we apply the power of Heckman operator
DZ(N) to the i-th vector of this equivariant family and get another equivariant family. The
last step is the symmetrization Ey(u) — the sum of all members of the equivariant family:

Ey(u) = Z o15(u),

where 0;; = K;;P;; is the permutation of i-th and j-th tensor factors.
For each F(z) € A®) @ V define the element S(F(z)) € A® as the formal integral

SP() = 5 § TP,

271 z
which counts zero term of the Laurent series. Here

(2) =Y ¢, (2)- () @er s AV eV =AY e,

16



the series ¢ (2) = >, en?" and the operator e : C* — C is given by the relation

4

e (ey) = dpe. The key point of the construction is the following lemma which establishes

the map & as the pullback of the finite symmetrization:
Lemma 5.2 For each F(z) € A®QV and any natural N we have the equality of elements
of ASN:

En(Tn_1 ®1)(F(2)) = anS(F(2)).

Let D: A® @ V — A® @ V be the linear map, such that for any F(z) € A® @ V

z =

- d d
DEOG) =zt K)o 52(1—5_@@*@) @ () O (g)

Here the upper index (i), i = 1,2 indicates in which tensor copy of C* the corresponding
vector lives or an operator acts. We state that the operator D is the pullback of the
equivariant family of Heckman operators DZ(N).

Proposition 5.1 For any F(z) € A®) @ V we have
(Fy-1® 1) D(F (1)) = D (fys @ 1) Fa)
Let E, € Eqd C*, be thg matrix unit, Fy(e.) = Opeeq. Denote by Eu, the operator
1910 Ey: AY eV 5 AP V:
EnF(2) = Fy(2) ® eq.
Summarazing the statements above we get the following result [27]

Theorem 5.1 The operator Ty, , given by

T = " ]f L ()0 D" B ()

271 z
is the pullback of the Yangian generator tup,, see (0.8):

TNTabn = tabnTN for any N e N.

Using this construction we derive the explicit expressions for the first Hamiltonians of CS
system.

In the next section we investigate the classical limit of the system. We introduce the
operator #° which is the classical limit of the second Hamiltonian, the rule between
the quantum commutator and Poisson bracket is 37![, | = {, }. In Proposition 5.3 we

present the equations of motion determined by J#¢:

dga(2)

_ cl
o — {u(2), ).

17



Here and further ¢,(z) and V,(z) are the classical analogues of field ¢,(z) and vertex
operator ®,(z) respectively.

The quantum system is integrable: it has an infinite number of integrals of motion
that can be obtained from the g-determinant of the Yangian generator function 7,,(u). It
is natural to assume that the classical system is integrable as well. In particular, it should
admit a Lax pair presentation. Consider the operators L and M acting on the analytic
function f(z):

Lf= z— ) + Z Va( V() ()T
8 + _ + a _ -1 +
Mf= (a—) ) 423 (67(2)0 () F2) + 2D Wal=)z - (05 (V' (2)F(2))

Proposition 5.4 The operators L and M represent a Lax pair of the classical system:

dL

o = [M, L].
6. Fermionic limit for spin system.
The fermionic limit of spin CS system was studied by D. Uglov. Here we suggest and
develop another approach, which leads to the limiting integrable system closely related
to [57], but realized by free fermionic fields, we mainly follow [26].

We start from the fermionic Fock space F*®, which is the representation of algebra
H? of s free fermion fields. We denote by W.(z) and Wi(z) be the following generating
functions of elements of H?:

= Z Yenz", Vi(z) = Z w:nzn_l
neL nez

For any |v) € F* we define a matrix coefficients by the following formula
mn ([v) = (0¥ (2n) W (2) - - - W (z1)[v),  |v) € F°

where W(z) = > 7 U.(z) ® e. and e. € C* are again basic vectors of C*. The matrix
element 7y (Jv)) belongs to the space A®Y . which is the phase space of finite spin CS
system. Then we systematically construct the pullback with respect to the maps my of
all operation required for the construction of the Yangian action on the finite-dimensional
spin CS system.

The crucial point of the construction is the operator which the pullback of total finite
antisymetrization Ay : V @ A>T — AN given by

u) =u-— Zalj(u)

For each F(z) € H* (z) ® C* define the element A(F(z)) € H® as the integral

A(F(z) / dz/ ¥ (u )
27rz 0 u—z



The following lemma establishes the map A as the pullback of the finite antisymmetriza-
tion:

Lemma 6.2 For each F(z) € H*® (z) ® C* satisfying the conditions (6.25) and (6.26),
any |v) € F° and any natural N we have the equality of elements of AP

Ay 11 (F(2) @ [v) = mnA(F(2))]v).

We remark that Lemma 6.2 holds only for a subspace of H® (z) ® C® analogously with
the fermionic scalar case. The special conditions (6.25) and (6.26) are preservation of the
polynomial space and homogeneity. These conditions are preserved by pullbacks of Dunkl
operators, which we define further.

Define an operator D : H® (z) ® C* — H?® (z) ® C*® by the relation

DF(z) = az%F(z)%—

. gy PPV (E) W FO ()
@mv/?wd AM@ T (o —w)(z—w) '

By means of Lemma 6.2 we now can identify the operator D as a pullback of the equiv-
ariant family of Heckman operators DgN) acting in the space of partially antisymmetric
tensors

Proposition 6.1 For any F(z) € H* (2) ® C° satisfying the condition (6.25) and (6.26),
lv) € F* and N € N we have the equality

mx 11(DF (1) @ [0) = DIy 11(F(a1) @ [v)).

As in bosonic spin case we introduce operators :

ab N AgabD" / dz / abD \II< ) ]
27rz 0 u—z

Summarizing the statements above we establish the operator Ty, as the pullback of the
Yangian generator tgp, in ASN.

Proposition 6.2 For any |v) € F* and N € N we have the equality

7TN<Tab,n|U>) = tab,nﬂ-N’U>-

We note the importance of the polynomial property of the total zero mode in the con-
structed Yangian action on the Fock space F?, which we prove by using projective prop-
erties of the Yangian action in the phase spaces of CS models, it allows to formulate the
following

Theorem 6.1 The operators Ty, satisfy Yangian relations.

In particular, the coefficients of the quantum determinant ¢ det T(u) form a commutative
family which can be regarded as the limits of the higher Hamiltonians of CS system.
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1 Bosonic limit of Calogero-Sutherland system

1.1 Integrability of quantum Calogero-Sutherland model

Consider the quantum Calogero-Sutherland model of N particles on the circle [9, 23]. Its
Hamiltonian is

HCS N _Zz:; <a€;z> ( ) Z smﬁ E '[iij;j))7 <1.1>

L

where K;; is the coordinate exchange operator of particles i and j.! After conjugating by

the function [,_ J|sm( (¢i — g;))|? which represents the vacuum state with eigenenergy
= (7/L)” N(N?—1)/3, and passing to the exponential variables z; = e 1" we arrive

after simple rescahng to the effective Hamiltonian

Heff_iv: 29 2+52$i+% 59 .9 ) P M o
N "Ox; z; —x; O 7O 2 o

i=1 i<j (z; — xj)
(1.2)

We consider the symmetric and skewsymmetric wave functions of the Hamiltonian (1.2):

A(X1, . Ty Ty EN) = EO(T1, Ty Ty TN,

then the eigenfunctions of the Hamiltonian H%*

H|Sln —qj) |ﬂgb( gL PNy

1<j

are also (skew)symmetric by the variables {g;} (except for the vacuum state in skewsym-
metric case). Denote by H and H the restriction of the Hamiltonian (1.2) on the space
of symmetric and skewsymmetric functions, respectively, then

N 2
o 0 €T; +£Ej 0 0 )

7o 0 2 :ci—i-:cj 0 0 Tyl

in the form suggested by Poly-

Further we use the Heckman-Dunkl operators DiN)
chronakos [46, 15]:

pW) —

Ky, (L5)

These operators satisfy the relations
N N
N N N N

7

n literature one can find the Hamiltonian (1.1) in the form, where instead the exchange operator K;;
presents identity operator. In other notations it corresponds to the case of symmetric wave functions.
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which coincide with the relatlons of the degenerate affine Hecke algebra after the renor-
malization DZ( | D . We introduce the operators

IET,EN) = Res, (Z (DZ(N)Y) : (1.6)
H’,EN) = Res_ (Z <D§N))k> : (1.7)

)

where Resy means the restriction on the space of symmetric and antisymmetric functions,
respectively. As an example the first operators has the form

N

aN = Z (xlf)%) + BN(N —1).

=1

Proposition 1.1 [17] i) The operators (1.6) commute.
ii) The operators (1.7) commute.

Due to the Theorem 1.1 operators (1.6) and (1.7) can be chosen as the integrals of
motion of the quantum Calogero-Sutherland model. In symmetric case the Hamiltonian
(1.3) is given by

H=a"N

Y

)

the expression of the Hamiltonian (1.4) in terms of H ,i is given by the formula:

H=H" —28(N-1)H™ + 8°N(N — 1)% (1.8)

1.2 Review of the scalar finite system

In this section we deal with the scalar CS system with N bosonic particles and review
recent results [39, 52] mainly following the approach of [39]. The main idea is to regard
the equivariant Heckman-Dunkl operators as a quantum L-operator acting on the space
of polynomial functions of one variable with coefficients being symmetric polynomials of
the remaining N — 1 variables.

Due to the previous section the higher Hamiltonians of the system are expressed by
means of Dunkl operators and can be chosen as any symmetric functions of DZ(N), as an
example power sums. Clearly, symmetric functions of Dl(N) preserve the ring of symmetric
polynomials AY = Clxy,...,zy]*V. This algebra is generated by the Newton polynomials

p,(CN) =af+...+2% k€0,1,... N (sometimes we omit the upper index N and simply
write pg). The Dunkl operator D( ) itself preserves the symmetry involving all variables
other than z; and therefore it acts on the space A " of functions symmetric in all variables
except x;:

AN A Clay) @ Clay, . . i1, Tigr, - - 2y] N1 (1.9)
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Denote by DZ(N) the restriction of the action of Dunkl operators on space Afz Then the
higher Hamiltonians (1.6) can be simply rewritten as:

AN = <Z (D§N>>k) . (1.10)

The action of Dunkl operator on symmetric function in N variables provides a family of
N equivariant functions: f;(z1,...;2;...28) € Af’z that

Kijfi = f;.

For any f(z1,...;2;...xx) € AY denote by (Ey f) € A% the following sum
N
Exf= ZKijf'
j=1

For an equivariant family of functions it can be written as:

(EN f)(l’l, ...,JZN) = fl(ZEl;fL’Q, ...,[EN)—I—fQ(ZEl;fL’Q;l'g, ...,JZN) 4+ ...

+fN($1, ...,l’N,l;xN).

An operator Ey : Af’i — Af coincides up to a scalar factor with total symmetrization.

The action of the higher Hamiltonian (1.10) can be obtained by the following proce-
dure: we start with symmetric fucntion f(x1,...,zx) € AY and construct an equivariant
family of its N copies using the natural embedding Zy, : A} — Aiv’i :

filwr, @ o) = inaf (2, o) € AT
Then the action of Dunkl operator can be rewritten as

X

. 0

J
€r; — ZE]‘ (
We act the k-th power of Dunkl operator (DZ(N))’“ and obtain the equivariant family:

(([)§N>)kf(x1, o)y (DY f (2, ,xN)> ,

then we symmetrize the answer using operator Ey. This procedure can be illustrated by
the following matrix formula:

N k
d !
wla_ﬂﬂl—i_ﬁle_xl _ﬁxlx—lxz fl
~ =2

H,=(1,1,... ) x2
e= (L) p= gl 8 2
1#£2 :
In
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Our next aim to reformulate action of operators iy, En, DZ(N)

sums piN). In the following we use the notation

Vi(z) =exp (Z z"aipn> (1.11)

for the linear map, which changes each occurrence of a Newton sum p,(CN) by péNfl) + 2~

in terms of Newton

Let F=F ({p,gN)}) € AY be a symmetric function in N variables written in terms of
(N)
Py,

Lemma 1.1 The natural embedding iy ,; : AY — Af’i is given by
ini(F)=V,(z;)F. (1.12)

Here V. (z;)F is a function of z; and {px} depending on (N — 1) variables.

Proof. The embedding iy, can be regarded as the presentation of a symmetric function
F by a polynomial in x; with coefficients being symmetric functions of the remaining
variables:

F({pk}) = Fo(.%'l, oo L1, L1y - - ..%'N) + F1<.Z’1, e L1, Ly 1, - .I'N)xl—l—

2
Fg(l’l, o L1, Ty 1,y - - .$N>Ii + ...

This expansion can be obtained by means of a substitution
pr =yl (1.13)

which in its turn can be obtained by applying the vertex operator (1.11) due to the Taylor
formula

F(z+1) = exp (taﬁ) 1) = F)+ S+ LG+

which yields a finite sum for polynomials. Observe that the formula (1.12) is correct for

any expression of the symmetric function in terms of Newton polynomials p; irrespective

of their dependencies. Indeed, since both sides of (1.13) are equal as functions in

x1,Za, ..., TN, the same is true for both sides of (1.12). n
Let ©*(€) be the following power series in £+

[ee] 8 o0 N
P (€) = 25“8”7, o (€) = 2— (1.14)
n 0

n=1 n=

where pg = N. We also use the notation
Vi(z) = exp Z —z"i . (1.15)
! n>0 apn

By definition the operator V7 (z) changes each occurrence of the formal variable pfcv ! by
the difference p) — z*. The operator V (z;) maps the space A} to AY ® C[x;]. Note that

VI(2)Vi(z)F=F Y FeAl. (1.16)
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Lemma 1.2 Let F(z;;{p,}) € AY'. Then

F({p.}) 75 29O (VLOF) (6:{m)) (1.17)

Here on the RHS the function F'(&;{p,}) depends on symmetric functions of (N — 1)
variables, while Ex F'({p,}) on the LHS and V[ (£)F on the RHS both depend on sym-
metric functions on N variables. The integral on the right hand side counts the residue

at infinity:
§ 1= 11 for 1) = Y g€
& oyen_

the formal integral on the RHS (1.17) changes each " in V{ (§)F to p,, which coincides
with the action of operator Ey. [ |

Lemma 1.3 The action of the Dunkl operator DZ(N) on functions F(z;, {pn}) € A" can

be expressed by the following formula:

DV F (s () = i {pn}>

B (1.18)
+0m § S (V) F) (6 (o))

Proof. Due to

Proof. In detail, the Dunkl operator D§ ) transforms the space Af’i of functions with
chosen variable x; into itself:

DI (s, () = im - F i, ) Y

x; 1 - Kij)F(xia {pn}) =

aa F(zi, {pn}) + BZ (Vi(z) F) (@3, {pn}) — (Vi(@) F) (25, {Pn}))

In each occurrence of F(az:i7 {pn}) we regard {p,} as symmetric functions of (N — 1)
variables, while in (Vi (z;)F) (z;,{pn}) {pn} depend on (N — 2) variables (all except z;
and x;). Using the absence of singularities on the diagonals x; = x; for Dunkl operators,
we first present each fraction in the series as a function of x;/z;, then replace them by
Cauchy integrals, to get:

DV (F () = i Fais ()

L

-3 - (Vi) F) (e o)) — (Va2 F) (55, ()

JF#i Zj
~ i F <xz,{pn}>
+ pa f ®e O W eve)F) (€ )
o % ﬂ% (VLOVAEF) (x (p})
3
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In the last summand the vertex operators cancel each other due to (1.16), and the cor-
responding integral vanishes since it contains £ only in negative powers. We then obtain
formula (1.18). ]

1.3 Bosonic limit in the extended ring of symmetric functions

A

The ring A of symmetric functions with infinite number of variables is defined as the
projective limit A = @Af with respect to the projection AY ™ — AY [30, 11.2]:

f(xy, 20, ;xn, xNy1) = (21, 29,...,2Nn,0) .

An element of A can be represented by a sequence of symmetric functions:

fi(@1), fa(wr, 22), .., fn(21, 22, .. 2N), - - o (1.19)

that stabilizes fni1 (z1,%2,...,2n,0) = fn (z1,22,...,2ZN).

The ring AY is generated by Newton power sums p;N) (x1,T9,...,2N) = Zf\il zk
(k < N). The Newton polynomials satisfy the stability condition (1.19) and thus correctly
define an element p, € A that can be presented as a series p, = zxf The elements py,
k=0,1,... freely generate the ring A.

We add to A the formal variable py and denote by A = Clpo, p1, - - -] the ring of
symmetric functions extended by the free variable py . The canonical projection 7y :

A= A_]X can be desribed by the relation:

N
7~rN:/A\—>AJI: pk%p,gN):fo, po — N. (1.20)

=1

The space A is an irreducible representation of the Heisenberg algebra H, generated

0
by the elements p, and — and can be regarded as a polynomial version of the Fock

Ipn
space. It contains the vacuum vector |0),, such that
0
—10)+ =0, n=0,1,....
apnl >+

The dual vacuum vector (0| satisfies the condition
«{0|p, =0, n=20,1,....
Introduce an operator ®(z) : A ® C[z] = A ® C[z]
d(z) = exp (Z z”ai> : (1.21)
>0 Pn

In these terms the projection 7y : A — AY can be defined for an element |v), € A as the
following matrix element:

Fnlv)s = 0|®(an) ... D(22)®(x1) V), (1.22)
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Indeed, for any |v); = F(po,p1,p2,...) the operator ®(z;) shifts each p, by zF, so we
have

O(zy)... O(x2)®(z1) )y = F(po+ Nopr+ Y _wipa+ Y _a7,...).

i=1 i=1
The left vacuum (0| "kills” each presence of p,, so we obtain

N N
%NF(pmpprw") :F(Nazxzazx127>7
i=1 i=1

which coincides with the definition (1.20).
Lemma 1.4 We have the following equality of linear maps A= Af’i :
ﬁ'Nfl(I)@UZ') = ZN,iﬁ'N- (123)

Proof. Applying both sides of of (1.23) to an element |v), € A we get the tautology:
both sides are equal to

H{0[@(zy) ... ®(x2)®(21)|v)s,

since ®(z;) and ®(z;) commute. ]
Introduce an operator ®*(z) : A ® C[z] = A ® C[z]:
O*(2) =¢ (2)exp | — Z z”i ) (1.24)
=  Opn
where ¢~ (2) is defined in (1.14). Define a linear map S : A ® C[z] — A as
dg .

The following lemma establishes the map S as the pullback of the finite symmetrization.

Lemma 1.5 For each F(z,{p,}) € C[z] ® A and any natural N we have the equality of
elements of AY :

Enn_1F (2, {pn}) = InS(F (2, {pn})- (1.25)
Proof. The RHS of (1.25) equals

H{0|®(zN) ... P(z2)P(x1) 7{ %Cb*(ﬁ)F(ﬁ,po,pl,pQ, )=

H0|D(zy) ... B(2)P(21) 7{‘2—5 <N+ Zé’—:) VI(EF(&,po— 1, p1,p2s- .. ).

The last is equal to LHS of (1.25) due to (1.17). Here we use a difference between the
definitions (1.15),(1.14) and (1.24) for ¢~ (2)V|(z) and ®*(z) in the zero mode p, and
)
9po”
o A n
Define an operator D : A ® C[z] — A ® C[z]

i 9 ¢ 1

D(F(z,{p})) = Z@F(Z, {pn}) + Bz 5_21 —Z
3

The main result of this section we formulate as the following

O (E)D(2) F (&, {pn})- (1.26)
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Theorem 1.1 The operator D (1.26) is a limit of Dunkl operators [)l(N).

In other words, the operator D is a pullback of DZ(N) under the map 7y, defined in (1.22).
We illustrate it by the following commutative diagram:

TN—-1

A ®Clz] AL
b ) (1.27)
A ®C[z] — AN

The commutativity of (1.27) follows from Lemma 1.5 and formulas (1.18) and (1.26).
Comment. This result was formulated in other terms by Nazarov and Sklyanin, Sergeev
and Veselov, see [39] and [52].

Theorem 1.1 implies the following

Proposition 1.2 The operators #, = SD*7 : A — A,
AL Aock 2 Aok S A, (1.28)
generate a commutative family of Hamiltonians of the limiting system [39, 52].

Proof. The operators .4, are the pullbacks of H ;N) under the map 7y due to Theorem
1.1, Lemma 1.5 and (1.23). Due to the property

ﬂNeN Ker ﬁ'N =0 (129)
of the ring of symmetric functions the commutativity of f[,gN) for N € N implies the
commutativity of 7. 3 . [

As an example let us calculate the first Hamiltonians 7 and 7%3:
- d£ 0 d£ _
6 = (& (§—> d&) = npn 1.30
. dg ( ) >2 dedn 1 ( a)

T = — | ) ++p5 o " ()P — | ®(&) =
= e (g) v+ SFY OO (g5 ) 2O
g~ dédn  _ (& 1

O (P00 © +eget©) 0§ o (£ - ) v
€ 9" n<e § 1-3 (1-3)
We have taken the second derivative in the first integral and used the commutator relations
- ®(n)
) =—
[p™(£), @(n)] -1

in the second. Thus

A = j{ & (@‘(6)@*(5)9@*(5) + 87 (6) = po) (0™ (9™ (§) + (1 - 5)¢—(§)€gw+(§))

3 o0&
(1.31)
0 0 0
= knpyin=——+p5 (k 4+ n)peps WPag -
k>O,Zn>0 Opr. Opn k>§>0 Opie+ ;

If we put pg = 0 and 3 = 1 the expression for A coincides with the so called “cut-and-
join” operator which has applications in the combinatorics of Hurwitz numbers.
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1.4 Classical limit and the Benjamin-Ono hierarchy

The Benjamin-Ono [8, 43] equation is nonlinear partial integro-differential equation ap-
peared in hydrodynamics and describes one-dimensional internal waves in deep water:

u + 2uu, + vH(u,,) =0, (1.32)

where

(=) = 2. [ a2 — i) - ()

y—z
is the Hilbert transform. It is completely integrable [2, 24, 16] and has an infinite number
of conserved integrals which are in involution with respect to Poisson bracket:

{u(z),uly)} = 0'(z —y).

The integrals of motion can be constructed recurrently using Backland (Miura) transfor-
mation [34].
The equation (1.32) can be rewritten in the form

ue = {u(z), 1},
where the Hamiltonian Z is defined by

7= [ (300+ 2 (vgout) Hute)) do (133

Introduce the following notation

0 _ _ n
@)=t ) = n e 6m(2) = Alem(:) —po) = 3
n>0 P n>0 <
The commutation relations 5
[na_pna ﬁpk] = nﬂén,k

read
[6(2), d(y)] = B (x/y).

Consider a difference % — py#4 and multiply it by j3, then using (1.30) and (1.31) we
obtain

- . . 1 [ d¢ 1-p 0 _

A =5(-mAh) =5 O+ 05 (7€) —67(©) 5 (130
where : : means bosonic normal ordering: the operators p, are moved to the left and the
operators 6}% are moved to the right. This leads to the following

Proposition 1.3 The operator (1.33) with v = 1 is the classical limit of the Hamilto-
nian (1.34) (8 — 0). The rule between the quantum commutator and Poisson bracket is

B, =1}, see [39].

Due to Proposition 1.3 one called the hierarchy (1.28) the quantum Benjamin-Ono hier-
archy.
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2 Fermionic limit

2.1 Polynomial phase space. Review of the finite system.

1. We regard the CS system of NV fermionic particles with polynomial wave functions using
the Heckman-Dunkl operators. The corresponding Heckman—Dunkl operators DI(N)
Clxy,...,zn] = Clxy,...,zn] are defined by the relation (1.5). Symmetric polynomials
in DiN) preserve the space of symmetric AY and antisymmetric polynomials AY. Denote
by ay : AY — A" the canonical isomorphism

ay: f(z1,...on) = f(z1,...on) = (1, .. an) Az, ... 2N), (2.1)

where o
A(ZL’l, - ,Z‘N) = z,]g?cN(x’ J) — ]i[(xZ — l’j)
1<
is the Vandermonde determinant.
The space AY is generated by the Newton polynomials p,gN) =ab+ .+ ak k=
1,...N. Due to (2.1) any antisymmetric polynomial can be written by the following
formula

. ay) = Ay, o) f{BNYY), k=12, ..
where f is a polynomial in p,. Here and further we denote by f(x1,...zx) or f ({p;N)}
a symmetric function and by f(z1,...2y) the corresponding antisymmetric function fol-
lowing (2.1). For an operator B acting on the symmetric functions we denote by B
the corresponding operator acting on the antisymmetric functions so that the relation
Bf(zy1,...2x) =B f(z1,...2x) holds.

The Dunkl operator DZ(N)
than z;. Denote by D

)

preserves the antisymmetry involving all variables other
the restriction of DZ(N) to the space of functions

flxsar, ..., zn) € AN (2.2)

antisymmetric in all variables other than x;. Due to (2.1) the LHS of (2.2) can be presented
as

f(fz’; L1y 7'1:]\7) = A(xh oo i1y i1y - - 7$N)f($z‘; {pk})a
where f is a polynomial in z; and in p,, which depend on N — 1 variables.

2. In the following we use the notations

Vi(z) =exp (Z z”i) ) V_(2) = 2" exp (— %) : (2.3)

n>0 apn

where N is the number of variables in pg. The operator Vi (z) we introduced earlier

in (1.11). More precisely, the operator V. (z) maps a polynomial expression in {p;}
. . . . (N)
and in z into the same expression changing each occurrence of a Newton sum p, ' by
p,(CNfl) + 2% due to the Taylor formula. The operator V_(z) does not change the number

of variables in py = p,iN) and can be equivalently written as an operator of multiplication

by H(z — ;) € C[2] @ AY:

Vo(z) =2 ﬂexp (— Z ;—;) = zNﬂeXp <ln (1 — %)) = ﬂ(z — ;). (2.4)

n>0 i=1 =1

30



Note that further we mostly use the composition of operators V_(z)V, (z), which maps
the space A [z, zy,...,2x] to C[z] ® A [zy, ..., 2x]. In this composition the operator
V_(2) has the form V_(z) = 2V "texp (— 3,.. 0 £ ), where pj, depend on N — 1 variables.

n>0 nzn /)

3. Let f({pr}) be a symmetric polynomial in N variables and

the corresponding antisymmetric polynomial. Denote by
ZN,i . A]_V — /\],V7Z

the natural embedding representing any antisymmetric polynomial as a polynomial in z;
with coefficients in A [z, ..., 21, Zig1, ... TN].

Proposition 2.1 The embedding ty; is given by the following relation:

iva(f@r . an)) = (=10 ewaf ({pe}) = (1) V (@) Vi (i) f ({pr}) =
= (—1)i+1A(.T17 P 4 B [ V7 ,l’N)v—(xz)V—i-(xz)f({pk})

(2.5)

Here V_(z;)V, (z;) f({pr}) is a polynomial in z; and in Newton polynomials {p;} depend-
ing on (N — 1) variables.

Proof. Using the definition of Zy; we present the antisymmetric function f(z;...zy) in
the following form

ZN’l‘(f_‘(L'El .. .TN)) :./'TQ(ZEh e L1, Lia 1y - - .xN) + fl(fﬁh o L1 Ty 1,y - - IN)ZL’Z‘F

_ 2.6
+ fo@1, e @i, i1, - TN (2:6)

where each fy(x1,...%;_1,2it1,...oy) is an antisymmetric polynomial. The decomposi-
tion (2.6) consists of two steps. The first one is a substitution

(N)

P b

— P, +

in all the functions f({py}), which is performed by the Taylor expansion

Fz+1) = exp (taﬁ) F) = £ + PO+ 2P .

giving a finite sum for polynomials. The second step is a factorization of the Vandermonde
determinant:

A((L’l, . 71’]\[) = A(l‘l, P 0 T [ /7 T I ,IN)(—]_)H—l H(.TZ — l’j).
J#

Due to (2.4) the factor [[,_,;(#; — x;) can be implemented in terms of pj, by applying the
operator V_(z;). Thus we obtain (2.5). ]

Observe that the formula (2.5) is correct for any expression of the symmetric function
in terms of Newton polynomials py irrespective of their dependencies. Indeed,

Vo(z) = H(z — 1) = Z er(zy, ..., oNn)2",
i=1 k>0



where eg(z1,...,xy5) = Z Tiy iy - .. x;, are the elementary symmetric polynomi-
1<iy <--<ip, <N

als. They can be expressed by Newton sums pg(z1, ..., zx) using Newton identities, and

these expressions do not depend on the number of variables V.

4. We also use the notations

Vi(z) =exp (— z”%) : V' (2) = 2V exp ( %) : (2.7)
n>0 " n>0

By definition the operator V7 (z) changes each occurrence of the formal variable

p,(CN_l)(xl, ..., xN_1) by the difference p,gN)(xl, ...y Tn-1,2) — 2%, Thus the operator VI (z)
maps the space C[z] @ A [z, ..., zx_;] into itself, changing the meaning of the variables

pr. The operator V' (z) can be equivalently written

S ST M

n>0 =1

N

:szZ ( Z $i1$i2---wm> Zik:zhk@l’”"wm o

k>0 k>0

where hy(zq,...,z5) = E Tiy T, - .. T, are complete homogeneous symmetric

polynomials. We then can rewrite

=3 hulpa ), (2:8)

k>0

where hi({p,}) means that complete homogeneous symmetric polynomials are expressed
from the basis of the Newton polynomials. These expressions do not depend on the

number of variables N. So the operator V' (z) transforms the space of polynomials in

p,(CN) and in z into Laurent series in z with coefficients being polynomials in p,(CN).

5. Acting on antisymmetric function in N variables the Dunkl operators produce an
equivariant family of N functions

fl(IMwa-wa)a f2($2;$1,$3,---7$1v); fN(xN;ml,---,xN—l),

where fi(z;;21,...,25) € AY" and K; ifi(zy; ml, oo xy) = —filzg a1y
For any polynomial f(z;;z1,...,zx) € AN denote by Ayf e AN the sum

(ANf)(xh 7xN) :f(xla X2, 7$N> - f(x% L1, T3, xN) - f_(xNy xy, “'7xN—1)7
which we call the total antisymmetrization of the function fi(ziszy, ... zN).
Let f(zi;{pr}) € AY" and f(z;;21,...,2x5) be the corresponding element of the
space AV

flzgxy,...,on5) = (—1)i+1A(a71, i1, Tty ) [T { DR} (2.9)
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Proposition 2.2 The total antisymmetrization (Ax f)(z1,...,xn) can be described by the
relation

(Anf) (21, ) = Al 2) ?{sz’(z)Vfr(z)f(z; () (2.10)
Equivalently,
(A NpeD) = §d=V (VIS i)

Here on the RHS the function f(z;{px}) is a polynomial in z and in p; depending
on (N — 1) variables, while V' (2)V(2) f(z; {px}) is a Laurent series in z with coefficients
being polynomials in p; depending on N variables. The integral on the right hand side
counts the residue at infinity:

ff(z)dz = [, for f(2) = Zﬁ,zZ

The proof of Proposition 2.2 is based on the following statement.

Lemma 2.1 The following relation is valid

A, an) — 2h A, 3y, ay) H oo (DR Aoy =
_ A(]}l,.ﬁﬂg,...,xN)hk+1,N<.’L'1,...,fﬂN) fO?“kzN—l
0 for0<k<N-1’
Here hy(x1,...,xn) = Z Tiy T, - - . T, are complete homogeneous symmetric poly-

1< << <N
nomials.
Proof of Lemma 2.1. Weyl formula for Schur polynomials says

A+ N—j
S Agsedn) (X1, T2, -, TN) = ijil?tN(xiﬁ NJA(zy, ..., 7N).
In particular, for hg(z1,...,2N8) = Sw00,.)(Z1,...,TN) We have
x{V_Q wév_g w%‘g
hiv1-n(T1, oy o) A(21, 29, . .., xN) = det : : : . (2.11)
T i) Ce N
1 1 1

For 0 < k < N —1 the determinant in RHS of (2.11) equals zero. The statement of lemma
now follows from (2.11) by the determinant expansion along the first row. See [54, $ 7].
]

Proof of Proposition 2.2. Rewrite the relation (2.9) in the form

flziszy, .. on) = (=D Az, o 21, Tigas - 737N)fl(-77i3 {pr}),

where f'(z;;{pr} = VI (2;)f(zi;{px}) and pj depends on N variables. The function
f'(xs;{pe})) is a polynomial in z; and py:

o) = D wifi({pe})
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therefore we can realize antisymmetrization by each power of x; independently:

M
(Axf) (21, .., 2n) :Zf,’({pk}) (¥} Az, 23, ..., wN) — THA(T1, 23, .., TN) + - ..

"‘( 1)N+1£L'ZNA<ZC1, To, ... ,Z'Nfl)) .

Due to Lemma 2.1

M
(ANf)(ﬂfl,---,ﬂCN) = A(£U173?2,---, Z fz {pk} hiy1- N(ﬂfl,---,SUN)- (2-12)
=N—

I=N—-1
Due to (2.8) the formal integral

7{ dzV! (2)2" = {hmH_N({pn}) form > N —1

0 for0<m<N-1"

thus the integral § dzV (2)f (2; {px}) gives the RHS of (2.12) divided by A(z1, Ta, ..., Tx)-
We then get (2.10). ]
6. Let f(z;; {pe}) € AVand f(z;;21,...,25) be the corresponding element of the

N

space A~

flzgzy, ... on) = (=) Az, 21, Tigs - 2n) [ {pe)}).

Define the operator :
N Nyi Ny
A= AL
by the relation

DgN)f(xz’, {pe}) = xi£f<xi7 {pe})+

oo a2 VG (v )l o)) — Vo @)Va @) (= (i)

r; — 2

(2.13)

Then we formulate the following:

Proposition 2.3 The action of the Dunkl operator DEN)

pressed by the relation:

. N.i
in the space A°"" can be ex-

D™ flasa,...,an) = (1) DM f(ay; {p}) =

- ) (2.14)
=(=1)"" Az, ... xim1, Tig1, - xn) D f (s {pr})-

Proof. Firstly, we use the embedding 1 ® ¢y ; : Aﬂ\:’i — Afﬂ’i’j from the proposition 2.1:

1@ v f(@i, {pn}) = Vo (@) V(@) f (i, {pn})-

Then the operator —*—((1 — Kj;) can be written by the following formula
i

Z;

.Z'Z'—.’Ej

(1 = Kij)V_(2;)Vy () f (w5, {pn}) =

= (Vo) Vi () f (i {pn}) = Vo (i) Vi (i) f (25, {pn})) -

JTZ'—IE]'

(2.15)
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Then we use the formula of total antisymmetrization from proposition 2.2. [

7. Here we present the formulas for antisymmetrization in a form which we will use
in the Fock space limit.

Remark 2.1 The formal integral § dzV'(2)V(2)f(z;{px}) for the polynomial f(z;{py})

i z can be rewritten as a complex integral

1 VI(uw)VI(u)f(z,{pk})
(27i)? /zoo e /uo,zdu < . (210

u —

Remark 2.2 For f(z;xz;; {px}) with parameter z; the formal integral for antisymmetriza-
tion ¢ dzV' (2)V](2) f(z; 2i;{px}) can be rewritten as

! VI (u)Vi(u) f (225 {pr})
/ZOO,Z<<Z‘Z' a2 /qudu ’ (2 17)

(2m1)? u—z

Here we choose the countour so as to avoid the singularity z = x;. This is a rule for how
to use the composition of Dunkl operators.
8. To obtain the Hamiltonians

A = S (DY

we replace the outer sum by antisymmetrization operator Ay so that we get an expression
which actually does not depend on ¢,

ngN) = AN(DfL(N))kZN,i = AN(D(N))kLN,i- (2'18>

The procedure is illustrated by the following diagram

IN,i (ng)k . AN

T AN - AN AN

AN

The expressions for the first Hamiltonians H ,gN) = (AN(DZ(N))’%NJ) are given below:

HN = N,
0 N2 - N
HY =3 " npu—+ (1+28) ,
; Opn 2
o 0 0 0
HM = nkppir=—=—+ 1+ 0 n+ k)pnp — By n’p,—
? n%;() *Op,, Opi (1+5) n%()( P Pt ; Opn

—(142p5) ann% + (36 + Q)Nannai

n>0 n>0 n

1
+6(2N3 —3N?+ N) + §(7N3 — 12N? + 5N) + B*(N® — 2N? + N).
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2.2 The limit in the space A

1. Let A = Afp] be the ring of symmetric functions extended by the free variable
po, defined at the beginning of section 1.3. Let W(z) and U*(2) be vertex operators
A — Clz, 27 Y] ® A,

U(z) = 27 exp (— Z %) exp (Z z"%) , (2.19)

n>0 n>0
U*(z) = 2 P exp <Z p_nn> exp (— Z z”%) . (2.20)
n>0 nz n>0 Pn

The following relations are valid:

U()¥(w) = (w—2): ¥(2)V(w):

U (2) " (w) = 1 ()T (w) (2.21)

(w = 2)

-9 are moved to the right and

Pn

operators p,, are moved to the left. Operators (2.19) and (2.20) satisfy the relations:

L v = = [ v w)u(e)ds = 1.

2mi 20w 2mi 20w

where : : means bosonic normal ordering — all operators o

2. Let |v) = f(po,p1, s Pk, --)|0) € A, where f(po,p1, ..., Pk, ...) is a polynomial in
pe. Define the evaluation map 7y : A — AN by the prescription

wn|v) = (0¥ (xn) - V(zq)|v). (2.22)
The function 7y|v) is antisymmetric polynomial
avlo) = [ (@i — ) fIN, (w1 + . an), o (2 4 2R), ). (2.23)
i<j
Indeed, W(zn) - W(z1) = [[,o;(z;i —2;) : Y(xn) - ¥(21) : due to (2.21). The operator

L exp (Zn>0 ?ag ) replaces every item py, in f with 2% +--- + 2% k=0,1,..., while

3. Similarly we define the map
Tn_1: 2PClz, 27 ® A — Clry, 7] ® A [xl, ey T 1, Tig 1, - TN
as follows
Tnoti: 2P @ ) = (1) THO[W (an) - (1) O (i) - W) 2 o). (2.24)
Define the inclusion ¢ : A — z7C[z, 27']] ® A by the relation

(o)) = W(z)[v).
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Lemma 2.2 The following diagram is commutative:

A : Clz, 27| @ A
N TN—1,i (2.25)
AN _ _ AN,i

UN,i

Proof. Let us check the commutativity of the diagram (2.25) for the element |v) =
f(Posp1y s ks ---)|0) € A. The composition of 7y and iy, defines the natural embedding
of the antisymmetric polynomial

O (zy) - W(a)lv)

into the space AY" which is the expansion of the function in z1,...xy over the variable
x;. Applying the maps ¢ and 7y_1,; we obtain the following relation
TN—1,it|v) = Tn_1,Y(2)|v) =

(DO () - W) W (i) - ()W) o) = (O] ] W(ay)l

N>j>1

which coincides with natural embedding 7y ; of (0|U(zy) - U(xq)|v). ]

4. Thus we have shown that for any |v) € A the element 7y_yu(]v)) C Clz;] ®
Ay, w1, i, oy] = A™" is polynomial in z;. Denote by U the space

U=nNny'y, (Ai“’) .

Due to Lemma 2.2 we have the inclusion L(/A\)A cU.
Define the map A : 2/°Clz, 27 !]] ® A — A of antisymmetrization as follows

dz ), (2.26)
00 u—z
where F(z) € 2"Clz, 27']] ® A. In other words
k
A 2P @ o) / dz/ AL u)zPot o
27T 50
Lemma 2.3 The following diagram is commutative:
PClz, 27 Y@ ADU A
7I'N—1,zw JT"N. (227)
AN,i N AN
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Proof. We can present any element in U as a series Y, 27 7#®|v;,). We check the commu-
tativity of the diagram (2.27) for the element 27°**®|v), where [v) = f(po, p1, .-, Pk, ---)|0).
Following the definitions we obtain:

Av-1a(2" T @ v)) = (=1)FHO[W (2n) -+ O (@)W (@imr) -~ C(1) 2l f(po, p1, - . .)]0).

Thus
7_TN—1,i(Zp°+k & |U>) = A(OCl, e L1, L1,y - - 7$N)f($i; {pk})7

where f(z;{px}) = 2N "Lf(N — 1,p1,po....). Using Proposition 2.2 we obtain

ANﬁN—l,i(Zpo+k ® |v)) =

A(l’l,

mN) / / k+N-1 _ _
SO [ GV VLY < L) = 0.8)

=(0|¥(zy)... \I/(xl)% /50 A2V (2)V](2)2" N (N = 1,py,pa. .. )|0).

Going by arrows 7y and A we get

TNARPTFE @ |v)) =

o d \Ij* Zp0+k
O @) Ve [z [ T fo )

To compare with the RHS of (2.28) we use the following transformations:

TNAGPT ® v) =

VI (u)V](u)e ~Bn Zpotk
O0(an) -+ 0o s [z [ ) Fpopis.)]0) =
(2m9)% /.0 uOz

u—=z

u—z

V/ u) k+N—-1
<O’\I](SL’N) SL’l 27_‘_@ / dZ/ du f(p0_17p1>p27"‘)’0> =
0

O @) ¥ags [ dV VIR N = Lprpa. .0,

Thus we prove the commutativity of the diagram (2.27) for the element zP***®|v). For the

sum Y, 2P @ |v;) we use the property of the space U, that its image by the projection

TN—1.1 1s a finite sum. ]
5. Define an operator D:A®Clz, 271 = A®C[z 27

DF@):%%F /uﬁw/; o= 1_{)@mmpgyxuapm».
(2.29)

Now we formulate the main result of this section

Theorem 2.1 The operator D acting on the auxillary space U is a pullback of Heckman-
Dunkl operators DZ(N) under the map Tn_1 ;.

Proof. Due to Lemmas 2.2, 2.3 we get the following commutative diagram:

UcA®Clz, 2] ——2s AN
D Y (2.30)
UcA®Clz,z7Y E— AN
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Due commutativity (2.30) D maps the subspace U into itself and is a pullback of DZ(N)
under the map 7y_1;. n
6. Define operators .74, = AD*.: A — A by the formula

~

I, Asu2ud A (2.31)

Due to (2.30) we get the commutative diagram

A - A

TN 7T|'N' (232)

AN - AN
_ 20 _
Proposition 2.4 The operators 76, generate a commutative family of Hamiltonians of
the limiting system.

Proof. For any N operators ET,EN) commute. Due to commutativity of (2.32) and the
fact that N Ker(7n) = @ operators ¢, commute as well. ]
We present the expression for the first Hamiltonians:

J%% = Do,
Py — Po
ann +(1+28) 25—,
n>0 Pn
Sy =Y nk 0 0 +(1+8) > (n+k)
2 — pn+ka a pnpkapn+k
n,k>0 n,k>0
n+k>0
-8y n’ pn—— (1+26) ann +5poznpn
n>0 Pn n>0 n>0 pn

1 B
+5(2p3 — 3p5 +po) + 5(7193 — 12p% + 5po) + B2 (ph — 205 + po)-

The limiting expression ¢ corresponding to (1.4) can be expressed by the formula similar
o (1.8):

%Z%—25(PO—1)%+52P0(170—1)2_
o 0
D SRS BNIERID DY (RTIA B

n,k>0 n>0,k>0 n>0

5
+(po— 1)) npn - 2po 3p3+po)+gpo(p 1).
n>0 n

’I’L

The Hamiltonian s + J# with shift 8 — (8 — 1) coincides with the bosonic limiting
expression (1.31) by putting py = 0.

7 Comments. The space A of symmetric functions can be realized either as the
projective limit of the rings of symmetric polynomials in N variables, or the projective
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limit of the spaces of antisymmetric polynomials in /N variables. The latter means the
commutativity of the diagrams

/ N

AN+1
WN 41
where
N
— . T s _1
Wyt f(@1, . TN, TN4) Hf(xl,...xN,O)Hxi : and
i=1
an t f(pr,pw) = [ [ — o) f((2 4+ an), o (@ 4+ 2, ).

1<J

The space A is not a projective limit of the spaces AY due to the presence of py which
breaks the commutativity of analogous diagram for A with ay replaced by maps 7y. On
the other hand, CS Hamlltomans H,, theirselves do not compose the projective system
since wy,  H NH ) £ H cuN +1- However, the Hamiltonians H,gN) written in form (2.18)
are Compatlble with maps wy_,, if we replace each occurrence of N in H IEN) to N +1
n H IENH). Moreover, each finite Hamiltonian can be restored from its limit by formal
replacement of each occurrence of py by operator of multiplication on the number N of
particles.

This correspondence hints the form of corrections in Hamiltonians to form a projec-
tive system: substract terms containing pg in the limit expression. Here are examples of
corrections for the first Hamiltonians:

N’ — N
Hyd = HY — (14 28)——5—,

pr,l

1Y) = 1" — 3N

pr,2 T pr,1

1

—6(2N3—3N2+N)— P

6(7N3 — 12N? +5N) — B*(N® —2N? + N).

2.3 Realization in the Fock space

1. The constructed above Hamiltonians form a commutative family of operators in the
space A. Moreover, they commute inside the Heisenberg algebra and thus can be used as
well in its other representations, for instance, in the bosonic Fock space F. In this section
we show how to realize the limit in the bosonic Fock space, the key point is to define the
analog of projection 7. The formulas for the Hamiltonians remains the same.

The bosonic Fock space is usually defined as a free commutative algebra C[q, p1, pa, . . .|
on varibles py and ¢. Define the vacuum vector |0) and a dual vacuum (0| of the bosonic
Fock space F:

Denote by (n| and |n) the following vectors:
—ni - n n
n) = e "|0) = ¢ "|0),  (n[=(0l¢g".
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These vectors are biorthogonal (n|m) = d,,,, and have the following properties
(nlpo =n(n|,  poln) = nln).

Any vector in space F can be presented as a linear combination of such vectors |v) =
f(p1, -y Pk, ---)|C), where f(p1,..., Dk, ...) is a polynomial in pj and c is so called charge of
|v) and we denote it by po(v). Denote by F, the linear span of vectors with charge ¢, then
F is graded according to the charge F = @ .z F..

Define the projection 7y : F — AY by the prescription

mn|v) = (0]W(zn) - U(zy)|v). (2.33)

Due to biorthogonality (n|m) = 4,,,, and fact that product ¥(zy)--- ¥(x;) contains ¢V
we have my(F.) = 0 for ¢ # N. Thus for |v) = f(p1, ..., Dk, ...)|c) we have

o) = {HK](xZ —z)f((x14 ...+ an), (@ 4+ 42k, for pov) = N
0 for po(v) # N
Similarly we define the map
Tnv_1i: 2P°Clz, 2 Y @ F = Clog, 2, @ A 2, ., i1, Tiga, - . - TN
as follows
Tn_1i 2P @ |v) —
(D)FHON (on) - W (@a0) U (5 ) -~ O (1) 2] o).

Due to the same arguments my_y,;(27°C[z, z7']] ® F.) = 0 if ¢ # N. Then we have the
analogous commutativity as in Lemma 2.2 for /" and 7y instead of A and 7y, which

is nontrivial only for the sector Fy, the proof remains the same. Denote by Uy C
2PC[z, 271]] @ F the space

0]\/' = 7&17171» (C[l’z] ® A(*)[xl, ey L1, g1y q:N]) .
We have the inclusion ¢(Fy) C Uy. The analogous commutativity as in Lemma 2.3 holds:

2P°Clz, 27 Y] ® Fn_1 D Uy A Fy

TN—1,i

m, (2.34)

AN - AN

An
The proof may be reproduced as in Lemma 2.3 changing each occurrence of pg by N — 1

due to Uy € 2"C|z, 27 ']] ® Fy_1. Thus we have the commutative diagram for the Dunkl
operators which is nontrivial for the N-th sector of the Fock space Fy:

TN —1,i

Fno1®Clz, 271 D> Uy — AN
D D) (2.35)
Fno1®Clz, 27| D Uy s AN

On the other sectors of the Fock space (2.35) holds due to my_;,; projects all to zero. We
arrive to the following
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Proposition 2.5 The Hamiltonians 74, : F — F are the pullback of Hamiltonians ]:],EN)
with respect to the maps Ty .

In other words, the Hamiltonians (2.31) obey the commutative diagram

F - F

™ ™, (2.36)
AN - AN
N P N

2. Now we want to describe the construction in the fermionic Fock space realized
as semi-infinite wedges and present the projection analogous to my. We introduce the
Clifford algebra generated by fermions vy, 1} for k € Z with anti-commutation relations

Yy + by = Pivi + i =0,
V)] + Vi = 0y

The fermionic Fock space F can be defined as a representation of the Clifford algebra,
where the vacuum vetor |0) is defined as follows:

Yal0) =0 n >0, ¥:0)=0 n<0. (2.37)

According to (2.37) the fermionic normal ordering : : is defined as follows:
s JUivs, 520
); wj: = ’ .
_wj iy J <0

In other words all annihilation operators are moved to the right and all creation operators
are moved to the left taking into account that the factor (—1) appears after exchanging
neighboring fermionic operators. Any wedge in the space A% (C[z, 27']) can be obtained
by acting of fermionic operators on the vacuum state

Uy Yy - - - Y, WLy -7 2]0). (2.38)
A charge of element (2.38) can be defined as m —n. We introduce the shifted vacuum |c)
|C>: 2—17/1T¢3|0> C>O.
Ve P2 4]0) <O
In F we can choose a basis |\, ¢) parameterized by partition A = (A1, Ao, ..., Ap):
|/\7 C> - ¢§1—1¢;2—2 s 77Z)3k\n—n|c - ’I’L> (239>

For fixed ¢ vectors |A, ¢) generate the c-th sector F, of the fermionic Fock space as a vector
space.

The fermionic Fock space admits a presentation F = A% (C[z, 27!]) in “semi-infinite
wedges”:

NN NN kS k> Sk > kpni1 =k, —1alln> N,
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which form a basis of F. The vacuum state |0) corresponds to
0y =2 A2z 2 Az AN

An action of fermionic operators on the wedge v is presented by formulas:

0
Un(v) = el Pr(v) =2" Nwv.

Note that the element 2" is added by v at the very beginning of the sequence, so the
permutiaion with other elements may produce a sign. The symbol % means that if the
wedge v = 2" A w then

@(z" Aw) = w.
The shifted vacuum is given by
o) = 2P A ZTEA TR AT
and |\, ¢) from (2.39)

I\ ) = htemt A phetem2 A A pARterk AN pAnen n e A pmnm e

Define the space AN (C[z, 271]) of finite wedge 2/* A 282 A ... A 25N with N elements.

It can be identified with the antisymmetric function A (Clz, 271]) ~ A_[z, ..., 23'):
AN LAY = AP ) = det 2 (2.40)

ij=1..N
For wedge v = 2" A 22 AL A 2R AL € AT (C[z, 27Y]) denote by pg(v) the charge of v.
We can define the embedding wy : A% (C[z, z7']) — AN(Clz,27Y]) :

k k kn .
PAZEA LA f =N
wN(U) = {Zl % ZN ! po(U) (241)

0 if po(v) # N

that simply keep only the first N elements in wedge v if its charge equals N. For a
partition A = (A1, Ag, ..., A,) we have

_ _ A .
PN TEA 2t N2 A A Y ife=N

won(lA ) = {0 itet N

where we put A\; = 0 for i > n. Due to the isomorphism (2.40) we obtain

wn (A, N)) =~ deth;\ﬁN*j = H (zi — zj) sa(21, 22, . - -, 2N),

ij=1... i
where s)(z1, 29, . .., 2y) is a Schur polynomial. Define operators
an =Y Wpithnt. (2.42)
J

It can be checked that they commute as bosonic operators
lak, a;) = Kkdp1,0-
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Define the operator () with the following commutation relations

[anv Q] = 50,71'
The operator e? is an operator which shifts the charge of the fermionic vector :
eane_Q = ¢n+17 esze_Q = 77/);+1-
Define the fermion field U(z) = Y, ¢ya* and U*(z) = >, ¢ja~ %! with
1 ) )
U ()W () = + 10N (2)W(2'): <2 (2.43)

T —x

The boson fermion correspondence is given by the formula (2.42) and the following rela-

tions:
s = x% @ X — . X L : 2.44
(x) eep( E nﬂ)ep(i nx) ( )

n>0 n>0
* . a0 ,—Q A—n n n .
U*(x) =z~ "e “exp Z ~ | exp —Z—x :
n>0 nx n>0 n

This corresponds with the notations given at the beginning of this paragraph where we
put:
0
_p = Pp, G, =n— forn >0,
Ipn
0
dpo’

and with notations of vertex operators (2.19) which are representation of ¢(z) and ¥*(2).
Due to the boson-fermion correspondence we formulate the following

o = Po, Q:

Proposition 2.6 The diagram (2.45) is commutative for N > 0.

j—_'bos J,—_-fer
m wn (2.45)
AT AY(Clz,27Y)

Here the upper isomorphism is the boson-fermion correspondence (2.42), (2.44). The
lower isomorphism is given by (2.40).

Proof. Consider a vector |\,c) € F/¢ for a partition X = (A, A2, ..., \,). We have
shown that

[Lio: (zi — %) sa(z1, 22, ..., 2n) ifc=N
WN(M’@):{O fer N 1 ’

for n < N. One can show [3] that boson-fermion correspondence implies |\, ¢) ~ s)(p)|c),
where s,(p) is a Schur polynomial in terms of py. Applying (2.33) to sx(p)|c) we obtain

_ Hi<j<z’i_Zj>5)\(21,227...,21\[> ife=N
T (sx(p)lc)) = {0 et n
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3 Generating functions of commuting Hamiltonians
for some special values of the coupling constant

In this section we derive the formulas for the densities of commuting Hamiltonians (2.31)

with f = 0. In this case the Dunkl operator (2.29) is simply the differential operator

(z%) and the Hamiltonians are given by

S, = (2712_>2 / L /u Ozduiﬂf“z) (z%)k\ll(z). (3.1)

They are the pullbacks of (1.7) in case 8 = 0:

. N o\ *
A =3 ()

=1

In this section we assume that § = 0 and use the same notations for Hamiltonians as
in (2.31). In this case the Hamiltonians can be simply expressed as operators on the
fermionic Fock space

Aoy = Ky
k

The boson-fermion correspondence allows to express the Hamiltonians (3.1) in the bosonic
Fock space, it was done by A. Pogrebkov [45] for the additive version and later by P. Rossi
[50] on the circle. In other notations the correspondence for the exponential generating
function of Hamiltonians is given by the formula [50]:

H(z) = i e — B / dz (: 5@z 3)e(2) . —1) . (3.2)

S = :
n! 2mix z
n=0

200

Here

Blz) = —~ :Z&x” (3.3)

— exponential generating function for Bernoulli numbers and a derivative of the bosonic
field expressed in terms of in terms of (1.14)

p(2) = ¢ (2) + ¢ (2). (3.4)

In this section we provide the explicit expressions of the densities for the family of
commuting Hamiltonians (3.1) different from (3.2). We deduce two different formulas.
We derive first formula by calculating the integral in variable u in (3.1) using (2.19, 2.20),
this leads to the following answer

() = f;g / % (: exp (m <z% + W))) ; —1) , (3.5)

zO0
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where the exponent is a formal series and B(z) is given by (3.3).
The second formula can be obtained by fermionic calculus. The answer will be given
in terms of the integral operator K : F ® C|[[z,27']] = F @ C[[z, 27 ]]

K[f(z) = = / W) f(2),

2 w— Z
wOz

f(z) € F®C[[z,27"]]. Then the generating function can be expressed by the following

R G o I

~1 is understood as a formal power series, see (3.22).

Here the operator T(z, K) = <

3.1 Bosonic calculations with vertex operators

Denote by #(z) the following integral

Wilz) = —— / Ozdqu*(u) G%)sz) (3.7)

271 uU—z

and by # (z,x) the exponential generating function.

W(zx) =) Vul2) (3.8)

n!
n=0

Then #4(z) is the corresponding density of the Hamiltonian .723:

S — i./ o).

271 J, 0 2

Densities #%(z), as we shall see (3.20), can be written as fermionic normal ordered ex-
pression

Wi(z) = 0 (2) G%)k U(2) (3.9)

Our aim is to find the expressions for the densities #} and the generating function (3.8)
and to prove formula (3.5).

Denote by
1) = mine) -3 L S
n>0 n>0
the bosonic field and, its derivative p(z) = (zaﬁ) n(z) = ¢~ (2) + ¢T(2) given in (1.14).
Then we can also rewrite the operators (2.19), (2.20) in he following form
U(z) = e W (z) = e (3.10)
)

where : : means bosonic normal ordering — all operators 3y are placed to the right and
operators p,, are placed to the left. The simple relation follows

LU (2)W(z) = 1. (3.11)
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Denote by w,(z) =: U*(2) (¢2)" ¥(z) :, it satisfies the recurrent relation:

0
Wnt1(2) =: @(2)w,(2) : +z£wn(z), (3.12)
which follows from (3.10). In comparison with (3.9) w,(z) is boson normal ordered. The
expressions for n = 0,1,2,3,4 are given in section 3.3. Combine wy(z) into a generating
function w(z, z):

w(z,z) = gwk(z)z—l; —: exp (x <z% + go(z))) . (3.13)

Here the exponent of operator means the formal series

exp (x G% + go(z))) —1+z (z% + go(z)) + % (z% + W)) (z% + 4,0(2)) .

acting on the constant function. Due to (3.12) we can write the differential equation on
the generating function w(z, z):

ow(z, )

ow(z,x)
Ox '

5 (3.14)

= p(2w(z,x) : +2
Futher we want to express #(z) from w,(z), we formulate the answer in Proposition 3.1.
We devide the proof in three lemmas.

We use the following notations for u,(z) =: W(z) (22)" ¥*(2) : with the recurrent
relations:

Uns1(2) = — : (2)un(2) : +2=—u,(2)

dz

and generating function u(z, z)

Denote by
v (2) =: \I/*(z)z”%\lf(z) D gn(2) = \I/(z)z"%\ll*(z) s (3.15)

We have the following expressions for their exponential generating functions:

00
.fll'k

o(z,2) = Juk(e) = V()¥(z+22) 5
[e.e] I‘k
a(z.1) =Y aul(e) 7y = V()W (2 +22)

Now we formulate a well known fact about exponential generating functions by the fol-
lowing
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Lemma 3.1 Let A(x) = Y07 a2 and B(x) = Y5, bi% be exponential genemtmg
function, C(x) = A(x)B(z) is a product of A(x) and B(z). Then C(z) = Y 7"y
is an exponential generating function with coefficients c,(x) expressed by the following
formula:

- n
Cp = Z (k) (Lkbn_k.
k=0

Now we formulate several technical lemmas:
Lemma 3.2 The following relations are valid:
(i) S (1) un(2)wik(2) = i,
(ii) = Yo () or(2)a-(2) = G0,
where & is the Kronecker delta.

Proof. This is an immediate corollary of Lemma 3.1 and the relations for the generating
functions:

tstute) o (1 (-2 +00) Yo (2 (-2 ) )

cv(z,x)q(z, x) = W (2)V (2 + 22)V(2) V" (2 + 22) := 1.

Lemma 3.3 The antisymmetrization A given in (2.26) of function z”% (z) is given

by the following formula:
a" 1 1 dz ot
"— = — A ntl ) : 1
A (Z ozn (2)> n+1 <27m'> /zoo z (=) ( Ozntt <Z)) (3.16)
Proof. We have to prove that
1 v " 1
210 Sy Y — 2 ozn n+1 =z

Differentiating n times (2.21) by z and multiplying by z" we obtain:

v (2w =3 (3) s (e ) v

k=0

After the normal ordering we calculate the integral:

1 U*(y) [, O" B
271 /yOz dyy —z (Z 82“\Ij(z)) N

1 n 1 k! Zk+1 & 8n—k:
E 2mi e U (2) W (y) ==
o go <k) 2 /yoz W (y — z)k+2 (Z azn—k> (2)¥*(y)
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1l 1 B 1 (n+1\  vpa(2)
=— kz:; (k> Pl Qi1 (2)Vn_p(2) == —m 2 (k N 1) Qa1 (2) Uk (2) = m

In the last equality we use Lemma 3.2. [

We use the following notations for coefficients which connect the expression for two

types of derivatives (z%)n and 2”6677;:

One can check the recurrent relations:
Qnje = K@p_1k + Gn—1k-1, Qon = Oom,

bn,k = _(n - 1)bn—1,k + bn—l,k—h bO,n = 6O,n-

Denote by B, the Bernoulli number given by the exponential generating function (3.3) or
equivalently by the recurrent formula:

B():l,

-1 &< /n+1
B, = By
n—i—lz(k—i—l) g

k=1

The following lemma can be proved by the induction

Lemma 3.4 The following relation is valid:

"1 1 n
Z ian—l,l—lbl,m = _Bn—m< ) .
= n m

Now we can provide an expression for the density (3.7) and the generating function (3.8).
We formulate the following

Proposition 3.1 The density #,(z) is expressed by the formula:
W) = 23 (M) B 1)
n—1\%) = < k n—kWk\Z), :

the exponential generating function (3.8) is given by the formula

rexp (2 (22 + ¢(2))) : —1.

W (z,x) = e (3.18)
and satisfies the differential equation
oW (v,z) O (x,2) €W (z,1) — ¢(2)
— = ()W (z,x) : +2 P 1 . (3.19)
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Proof. By definition

_ 2 V) (LONT 2 W (y) p O
Wir(2) = o /yozdyy_z(zaz) ¥ = o a2y a (F 5500

Using Lemma 3.3 we obtain:

n—l 1 i oF+1
Wy1(z) =2 U (z) Z 101k + W\Il(z) ;
k=1
: \I/*(Z) Z ot 1an—1,k Z bk+1,m (Z&) ‘IJ(Z) :
k=1 m=1

n n—1 n
1 n
- an—l,kbk—l—l,mwm(z) - - Z ( )Bn—mwm(z)

—_

kE+1 n m

m=1 k=m—1 m=1

In the last equality we use Lemma 3.4. Thus we obtain (3.17).
Now we check the formula for the generating function. We have two exponential
generating functions:

1 [ a® wk+1(3)xk
(w(z2) = 1) = — ’;wk(z)g =D

8=

and B(x) given by (3.3). Using Statement 3.1 we check that

n

1 n—1 1 /n-—1
k?——l-l < k )Bn—l—kwk+1 (Z) - mz_l E <m . 1) Bn—mwm(z>

_ %mzl (Z) By it () = i1 (2).

The differntial equation (3.19) directly follows from (3.14). ]
We proved that the densities #j(z) are linearly expressed by wy,(z) (3.13) and present
these expressions for the first densities:

n—1

k=0

Ho(z) =wi(z), M) = gunlz) - gun2),
Wa(z) = 3us(2) = gun(e) + gun(z),
Wi(z) = }lu@(z) — %U}?,(Z) + ;lwg(z).

The expressions for the corresponding Hamiltonians are given below

0 1
o = po, %:ann£+§(p3—po),

n

n>0
g 0 0
% = Z nkpn+ka_a_ + (n + k>pnpka +
1 Es0 'Pn OPk k=0 Pnik
0 1
+(2po — 1) ann% + 5(200 = 305 + po);

n>0
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0 0 0 0
% = Z nkmpn—f—k-‘rma a_a + (n +k+ m>pnpkpm8—+
n,k,m>0 P OPm n,k,m>0 Prtk+m
m+k—1
+ Z Z kmpnpm—I—k n a Y Z n pn_+
6 apm
k: m>0 n=1 n>
3 o 0 3
- <3po - —) > nkpniks—a— + (3po - —) > (n+k)paps
2 n,k>0 Opn Opx 2 n,k>0 OPn-+k
+ (3po — 3po + ) Z nPng - —2p4 +1}) -

3.2 Boson-fermion correspondence and integral operators

Due to this correspondence we can compute the Hamiltonians (3.1) in fermionic variables

using (2.43):
AN U(z) = L dzU*(z) Z2 k U(z):,
"9z 2mi /zoo 0z

= 2m / w0 dz/
(3.20)

which gives expressions (?77?) for the Hamiltonians in the fermionic Fock space.
The Hamiltonians in the bosonic Fock space one can obtain directly form the boson-
fermion correspondence :

1 R :\IJ*(x)\If(x’)—lz'

x—x x—x

Putting ' = x — ez and expending into the series by ¢ one can see the densities for the
linear combinations of Hamiltonians 7. The answer is given by formula (3.2) in [45, 50].

Another way to express the answer is to use the fermionic calculus. Due to (2.42) we
have

o(z) = 20" (2)U(2):
Let %,(z) be the n-th density of Hamiltonian

1 Y DU
Ho = 9 / U (2)dz = — [ U (z)za\ll(z)
50

211
200

We start with 24(z) = ‘p(j). To calculate the first density we use Wick’s theorem

0(2)U(w) = 20" (2)U(2):0" (w)¥(w): =
=20 (2)U(2)V* (w)¥(w): +

w—z

_|_

Computing the integral
1 dw

271 w—z
wOz

0(2)U(w) = f\Il*(z)Z%\I/(z)f - f@(z)z%iﬂ*(z)f
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we obtain

E\D*(z)z%\ﬂ(z)f:% (2712,) / wdiuzgo(z)?/o(w)%—z%@/o(z)

wOz

Using the integration by part we can write the following formula for the first density

O / wdiuzgp(z)%(w)—%o(z)f
wOz

=0 (2) U (2) T (w) (wa%>k\y(w)z b 0(2) (wa%)kqf(w)s

() e oo () )

Using integration by parts one can express linearly .77, through the previous 7, and

o [ 2 o(2)%(w). We omit the details, the calculations use the same combinatorial
wOz

relation as in Lemma 3.4. To express the answer we introduce an integral operator
K:FaClz ] = FoC|zz!]

1 dw
Kl =5 [ ool f ),
wOz
with the kernel K (z,w) = %, f(z) € F®C[[z,27Y]. Now we formulate that %4 can

be obtained by consistent applications of operator K by the following

Proposition 3.2 The Hamiltonians can be expressed by the formula:

1 1 &K/n+l  [e(2)
%%z‘/d’z <n+1z(l+1>Ban [ = )
200

=0

The generating function for the Hamiltonians is given by

H(z) = iz /dzezKK_l [‘p(;)] . (3.21)
z00

K _ . .
Here the operator T'(z, K) = % L means a formal power series in K:

T(x,K) = 2T + 2*Ty + 2°T5 + . ..

2 x3 x?
= K4+ K24 KP4
L L VRIS

(3.22)
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where 7, = - K", Note that the expression (3.21) is not normal ordered. As an example

we give the expressions for the first generators of T'(z, K) [@} :

z 2m w—z w
wOz
o(z) 1 / du / dw o(w)
T —
’ [ 2 } (271) u— zgp(z) w — ugo(u) w
uOz wOu

3.3 Comparison of three constructions

Here we compare three formulas (3.5), (3.2) and (3.21) for the generating functions of
the Hamiltonians. All the functions have the same multiplier B(x) which produces the
Bernoulli numbers. So the three ways to express the Hamiltonians is

%(x):i@/%(w(%x)—l):i@/%(S(z,x)—l):ﬂ@/dzT(x’K) {@(2)}

2mix z 2mix z 2mix z
200 200 200

where w(z, z) is given by (3.13), T'(z, K) is given by (3.22) and

2
s(z,x) =1+ Z ysk(z)

is the exponential generating function given by the formula

sinh(%
s(z,x) =: e?S@ 5% . where S(t) = t<2).
2

The generating functions s(z, ) and w(z, x) differ by full derivative, we demonstrate this
for the first generators:

s1(z )— p(2) wi(z) = (2) ;

s2(2) = (2)” : wa(2) =: (0(2)” +¢/(2)) :

sa(2) = (p(2)° +39"(2) 1 ws(2) = (0(2)° + 3p(2)¢' (2) + ¢"(2)) -

sa(2) =1 (p(2)" + 9(2)¢"(2)) + | walz) = (p(2)* + 6¢°(2)'(2) :
+p(2)¢"(2) +3(¢'(2)?) + ¢"(2))

z

Here f(z) means 24 f(z). The densities s,(z) have less items, w,(z) have simple

recurrent relations (3.12). In fact formula w(z,z) gives precise expression for densities

(3.7). The last formula (3.21) does not give a normal ordering answer, but is expressed as

consistent application of simple integral operator in comparison with w(z,z) and s(z, )
which are expressed in terms of differential operators.
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3.4 Time evolutions hierarchy

The Hamiltonians .77, commute, thus we can define an hierarchy of time evolutions defined
these commutative flows as

i, (2) = [0, ¢(2)].
In fact it can be calculated directly and we formulate the result by the following

Lemma 3.5 The hierarchy of time evolutions defined by commutative family (3.2) is
given by

1 k! : 0 2S(z2-2)o(z
o, (2) = §B(£C) ; /oo dxﬁ sinh (xza) eS@25z)e(@) . (3.23)

Proof. Due to commutator relations

ni =nd
apn,pk = NOnp,k,

we have P
where 6 ({/n) =, f}—z means delta-function on the circle. Using (3.24) we compute the
commutator relations with s(y, x) =: 2S@ug)ew) .
dy T 0\ zS@=L2)e(2)
o(z ,/ —o(y,x)] =: = sinh (xz—) ™\ ¥z )P\E) 3.25
). [ Vot = Goinh (v (3.25)

for the first s,(z) this gives:

2 [ Do) =0. (o) [ L) =250l

o0 Y

Up to the replacement the derivative z% by % the evolutions given by [p(z), fyOO %sk(y)]
coincide with the hierarchy found in [45] for the additive version.

Using (3.25) and taking into account the Bernoulli factor — we obtain the general
formula (3.23). ]

The first examples of (3.23) are given by:

Gl =0, pu(D)=376) vl =25 (396 - o)

Pulz) = 2 (ﬁ(z) +3(730) v - 300+ iﬂz))

where f'(z) means z% f(2) . The classical limit of the hierarchy (3.23) is the dispersionless
KdV hierarchy on the circle, see [45].

o4



3.5 Generating functions for a =0

To find the generating function for higher Hamiltonians in general case is an open problem.

We are able to calculate the Hamiltonians in case a = % Denote by D' = lir% aD, where
a—

D is given by (2.29) and o = %, then

D'F(z) = ﬁ /00 dw /O ud_uw \11}*_(22 (V(w)F(z) — ¥(2)F(w)).

Proposition 2.4 works for D’: the operators 4. = (1(D’)*A) commute. Denote by #, (z)
the corresponding density and combine them into generating function:

k=0

Proposition 3.3 The generating function is expressed by the formula:

W (z,x)=e" (1 + % (exp (a:z% + xgo(z)))) :

Here ¢~ (2) is given (1.14) and exponent means a formal series

exp xz3+a:¢*(z) :1+x¢*(z)+m—2 (go*(z))2+zggo*(z) +...
( 0z > 2( 0z

In fact this case gives a trivial answer. The densities %, (z) depends on ¢~ (z) and

its derivatives, so the integrals 77, = ﬁ df”‘//k_(z) are polynomials in pg in this case.
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4 Dunkl operators and representation of the Yangian
Y(gl,)
1. The Yangian Y (gl,). Let

Rip(u—v)=1-— ZEb®EbaEEnd((CS®CS)

u—v

where E,, € End C* is the matrix unit, E,(e®) = dp.e® for basic vectors e¢ € C*. By
definition, the Yangian Y(gl,) is a unital associative algebra over C with generators ¢,
a,b=1,...,5,72=0,1,... subject to the relations encoded in the Yang-Baxter equation

Rio(u —v)T1(u)T2(v) = To(v)T1 (u) Rig(u — v), (4.1)
where T} (u) = T'(u) @ Id, To(u) = 1d ® T'(u),

Z Eab X tab E End(@s) ® Y(g[ )[ ]

a,b=1

and

u) = 5% + Z tasu”"Y a,b=1,...5s (4.2)

are generating functions of t,,,. Equivalently, the defining relations (4.1) of Y(gl,) are
[36]

tcb(u)tad(v) — tcb(v)tad(u) .

tan(w), tea(v)] =

The center of the Yangian is generated by coefficients of the quantum determinant [9, 36].:

gdett(u) = > (=1)*" o)1 (o2 2(t = 1).tom)m(u —m+ 1), (4.4)

oESm

(4.3)

2. Representation of the degenerate affine Hecke algebra. Consider a space V&V
of functions in N variables with values in vector space (C*)®V, here? V = C[z] ® C*.
Denote by Kj;; the coordinate exchange operator of i-th and j-th variable and by F;;
the permutation of i-th and j-th tensor copy of the vector space C°. We fix a basis
{e',e? ..., e*} in the C*® that we call spin space. The operators K;; of permutation of the
coordmates P;; of permutation of the spins, and o;; = K;; P;; of the corresponding total
action of the symmetric group Sy can be expressed by the following formulas

Kj:(.®€"02"e..0EeeMe...)2(.0Ee..0e"e...

Pii(..®(®"®..0"e...) > (.0"@Me.. 0o Me...
0 (@RI, (.M. R, ..

Denote by Aft’N the spaces of total invariants or respectively skewinvariants of the sym-
metric group Sy in the space V&V,

AN = (ven)®) (4.5)

2We also use the notation V = V(z) when we need to specify the name of the variable
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The (skew)invariants are taken with respect to the diagonal action of the symmetric
groups, 0;; — K;;P;,

Next we describe the representation of the degenerate affine Hecke algebra in the
space A2Y. We use the Heckman-Dunkl operators DEN) VAN S veAY ! in
the form suggested by Polychronakos [46]:

D) = oz:vii + o

i
8% i Ty — Ty

(1-K;). (4.6)

These operators do not change spins and satisfy the relations
N N
N) (N N N
D", D)) = (0" - D) K,
which coincide with the relations of the degenerate affine Hecke algebra Hy.
There are two natural commuting families in degenerated affine Hecke algebra Hy,
see [11]. The first one is formed by commuting operators &; 3

P 1=K 1 — Ky —-1).
i mang g K+ T (K £

They commute, and satisfy the relations
Ki,i+15i = 5i+1Ki,i+1 — 1. (4-7>

Another family is formed by the elements

0 T x5
d; = ax; . 1— K;; J 1— K;; N —1). 4.8
maxiJeri—xj( J)+in_%( i)+ (N —i) (4.8)
1<t 1<
The elements d; satisfy relations
Kiindi = dip1 K0 + 1 (4.9)
and are related to ¢; as
di = KQEIN,Z‘K(], (410)

where Ky(x;) = xn_; represents the permutation of coordinates, associated to the longest
element of the symmetric group. Heckman operators D;, see (4.6), which we use, are
related to the above families by the relations

D; = Kye1 Ky = Kindn K, D;=¢e; — Z Kij =d; — Z Kij. (4.11)
j<i j>i
3. Representation of the Yangian Y(gl,)
Let

T(u) =Y Eu ®ty(u) € End(C*) ® Y(gl,)[u]

a,b=1

(N

3here and further we omit upper index in ¢; ) and in dEN) assuming their dependence of N variables.
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be the generating matrix of Yangian generators. Then the prescription

J(01)

ot T(u) = 1+ (4.12)

u—a

. . . s 0
describes the evaluation homomorphism &, : Y(gl,) — U(gl,). Here 100 =%, B9 g

Eillj) The upper index in (4.12) specifies the tensor component. Since Yangian is the
Hopf algebra and the operators ¢, : C[z]®" — C[z]®*" commute, the assignement

T(u) — T (u) = <1+ 1o ) (1+ 1o ) (4.13)

u+ e uxey

determines a representation of Y (gl;) in V&V ~ ((CS)®N®(C[21, ..y zn]. It is known [14, 5],
that this Yangian action preserves the subspace Us,N = Zi]\;_ll(sz"i_i'_l F 1)V®N and thus
equips the space

AV =VveEN U
of Sy — (skew)coinvariants of V&V with the structure of Y(gl,) - module. Conjugation

of the RHS of 4.13 by means the longest element wy = KOPO of the symmetric group Sy
gives another presentation of the Yangian action in A%":

T 1 1" 1 1o 4.14
N(“)_(+uidN>"'(+uid1>' (4.14)

T.Arakawa proved [5, Proposition 5], that in antisymmetric case

N p0)
Twn(u) =1+ ; > mod U, . (4.15)
Analogously, in the symmetric case one has
N (07)
)=1 Z mod Uy (4.16)

Note that the latter presentations can be equivalently used in the spaces Aft’N of Sy —
(skew)invariants, since the RHS of 4.16 commutes with the total action of the symmetric
group. In components it is given by the formula

abz

where E,;; is the action of the Lie algebra gl on i-th tensor copy of V&V

Eab’i(...®(ec®xk)® )—&,c(. R @r")®.. )

[ 7
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4.1 Spin Calogero-Sutherland system

The phase space of the quantum spin Calogero-Sutherland (CS) system consists of func-
tions with values in vector space (CS)®N while the dependence on spin in the Hamiltonian
given by (1.1) is implicit [23]. Using the same recipe as after formula (1.1) and choosing
the parameter a = 7! more common in mathematical literature, we arrive after simple
rescaling to the effective Hamiltonian

H—ai SR RV o E R (SRR B /R
N — Z@xi i<y Ty — Xy 18:@ ]al'j W

2
i<j (xl - 'rj)

It acts in the space V®N and we restrict this action to the space of total (skew)invariants
A%Y (4.5). The Hamiltonian is expressed in terms of elements &; of the degenerate affine
Hecke algebra by the following formula:

H:Z(ef—asi),

Due to commutativity [e;,€;] = 0 the Hamiltonian H belongs to the center of degenerate
affine Hecke algebra.

The spin Calogero-Sutherland model admits Yangian symmetry, namely the action
(4.17) of the Yangian on the space A} commutes with the Hamiltonian. Then the higher
Hamiltonians of spin CS system can be chosen as coefficients of the quantum determinant
which generate the center of the Y(gl,). In fact one can choose any commutative subal-
gebra of Y(gl,) including H to be the higher Hamiltonians, or the elements of center of
the degenerate affinne Hecke algebra, for example

H,=> e (4.18)

Our main goal is to construct the limit of the above Yangian action when N tends to
infinity. In particular, we get the limits of the above commuting family of Hamiltonians.

4.2 Projective properties of Yangian action

To construct the limit we need investigate the projective properties of the Yangian actions
in phase spaces Aft’N of CS model. For such purposes we use the multiplicative presentation
(4.13) in terms commutative family of Dunkl operators. Such an analysis was done by
D.Uglov in [57], but our description differs from that of [57].

The rings AY (= Afr’N in the notations 4.5) of scalar symmetric functions form the
projective system with respect to the maps

wh o AY — AT wif(x1, .. on) = f(x1, ..., 2N-1,0). (4.19)

Analogously, the spaces AY (= AN in our notations) of scalar skewsymmetric functions
form the projective system with respect to the maps

Wy AN 5 AN wyf(xy, ... zNn) :(3:1...mN_l)_lf(xl,...,:I:N_l,()). (4.20)
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The latter can be generalized to the spin case. Regard an element f of A" as (CS)®N
valued function f = f(zq,x9,...,2N). Set

wy(f) = (z1---2n_)" (1®(N_S) ®ef ®ey - ®ey) f(zr,...,on-50,...0), (4.21)

which coincides with (4.20) in case s = 1. In components,
— (01 an _ a1—1 an—s—1
wN<xl €@ ... QTy eCN) - 5‘1N,0 T 5aN—s+1,056N73. o 5CN75+171:E1 €ey @ .. QTN Eey_,-

One can see that wy is a linear map from A®Y to ASV %

For the analysis of compatibility of transfer matrices with projection maps 4.19 and
4.20 we use Dunkl operators dZ(N) (now we use the upper index to distinguish the number
of variables on which this operator acts).

Consider first the scalar case s = 1. Set

AW =02 4 1— Knj),
N axN ];V TN — l‘j( Nj)
1
AN = (1= Kin),
Ti — TN
BN =d" V41, i<N (4.22)

Note that operators AZ(»N) and BZ(N) transform polynomials to polynomials and
[zn, BM] =0 (4.23)
The following statement is straightforward result of the analysis of 4.8:

Lemma 4.1 The Dunkl operators dZ(N) admit the decomposition

AV = ay AN, (4.24)
AV = 2y AN £ BM = g AN L gD 1 < N (4.25)

Relations 4.14, 4.24, 4.25 and 4.22 imply the compatibility relations of transfer matrices
for N and N — 1 variables in scalar case.

Proposition 4.1~[_22 In scalar symmetric case we have the following identity of operators
from AN [u™] — AYuY]

u+1
wi Ty (u) =

Tn_1(u+ Dwi; (4.26)

(ii) In scalar skewsymmetric case the following identity of operators from AN[u™'] —
AY"Hu™] holds:

_ u+1
wyTn(u) =

Tn-1(u—a—1wy. (4.27)

Proof. Due to 4.24, any power of the operator ds\j,v) is divisible by xy so that the
J(ON)

application of wf\ﬂ, to <1 +

= ) reduces to the multiplication by the scalar operator
U N
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u+1

u
of dZ(N) modulo ideal generated by xy differs from the action of dEN_l) by shift by 1. This

. Next, in symmetric case for any ¢ < N due to 4.25 and 4.23 the action of any power

. ) ) 0
gives 4.26. In skewsymmetric case the action of 2;— on the product (z; - - ‘xn_1)7L, see

axi
4.21, gives additional shift by a. So we have 4.27. U
[terating the relations 4.26 we see, that in symmetric case the renormalized transfer
matrices N
Tn(u) = “—Ty(u - N) (4.28)
u

are compatible with projection maps wj;,

Wi T (u) = Ty_y (w)wi. (4.29)

In antisymmetric case we can use

Tn(u) = fn(u)Tn(u+yN), w&TN(u) = TN,l(u)w]Q, (4.30)
where v = a + 1 and
Nout kv
= _— 4.31
In(u) kl;[lu+kw+1 (4.31)

The statement of Proposition 4.1 can be generalized to skewsymmetric spin case.

Proposition 4.2 The following identities of operators from C® ® ZNXiNS[u_l] - C®
AN 1,-1) holds:

u—+1

Wy Ins(u) = Tin-1)s(u — a = s)wy,. (4.32)

Proof. The proof of Proposition 4.2 distinguishes from the proof of Proposition 4.1
in two details. Set
Tns(u) =T (w)T"(u),

Ins Iin—1)s41
u—dy;, u—diN" 0

Iiv—1ys I
T//(u): <1+(—N> (1+—N
u—dEN_)l)s u—dg )

Then modulo the ideal generated by z(x_1)s41,-..,Zns the action of each element d,(CNS)
in 7"(u) differs from that of d,(g(Nfl)s) in Tin-1)s(u)wy, by s + a. This explains the shift
of the spectral parameter. On the other hand the each d,gNS) in 7"(u) can be presented in
a form

where

d,iNS) = Z$(N71)s+jAjk7 k> (N-1)s
j=1
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where Aj;, trasform polynomials to polynomials. Thus the computation of the action of
wyI"(u) reduces to the identity

Ins I(nv-1)s 1
(1+ N)...(HM)@@,HGSEH 0Q®... e (4.33)
u

U u—s—+1

in the space (End C'® Ais> , equivalent to the computation of the ¢ - determinant of Yan-

gian matrix [36]: We demonstrate 4.33 for s = 2, renaming tensor indices and assuming
final projection to A*™*:

Zijzl ;" ® Ej ) (1 + itz B ® By ) €1 ®exy =

1+

U u—1

E(O) ® E(l) E(O) ® E(Q) E(O)E(O) ® E(l) ® E(2)
1 + 11 11 + 22 22 + 21 12 21 12 e ® ey =

u u—1 u(u —1)
0 0 0
EY | By By

1 — =
+ ” +u—1 u(u—l))®el®€2

9 EY u-+1
1+ 4+ 2 1 Qe ®e=—— Qe @ e
u u u

Set v =a + s and B
Tns(u) = fan(u)Tns(u+yN), (4.34)

where now

fN(u)zﬂ e :F<%+N+1>F<"T“+1>
et L (e N (241

treated as asymptotical series in u~!. Then T, (u) satisfy compatibility conditions
w]?fsTNS (U) = T(N_l)swxfs

and form a projective system of transfer matrices.
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5 Bosonic limit of spin Calogero-Sutherland system

In this section we observe the results of [27] using slightly different language.
Denote by A®) the free unital associative commutative algebras generated by the
elements
Paks a=1,...,s, k=1,2,...

The ring A®) can be viewed as the ring of polysymmetric functions, that is the projec-

tive limit of polynomial functions on the variables x11, ... 21, Zo1, ... Tony, - - - Ts1y - - - Tspy,s
symmetric on each group of variables z41,...%4,,, @ = 1, ..., 5. Here p, corresponds to
the Newton sums z¥, + 2%, + .. Denote by A®) the free unital associative commutative

algebras generated by the elements
Dak a=1,...,8, k=0,1,2,...

We have A®) 5 A®) . Additional ”zero modes” Da,0 Will further serve to count the numbers
of variables in each group.

Let H*® be the Heisenberg algebra with generators a.x,c=1,...,s, k=0,1,... and
(g.)™", which satisfy the relations

(@ s Aa) = kOedOr,—1, qea ) = (@qk + 6cadro)qe- (5.1)
The space A is a representation of the Heisenberg algebra H?®, where

acvk '_> pc7_k7 k S 07 H eﬁ
ac,k —> k%, k' > 07 ’ Qe ’

The unit of the ring A® is then identified with the vacuum vector |0)+, so that
ackl0)y =0, c=1,...,8, k>0, G0 =10);, c=1,...,5. (5.2)
Denote by (0| the vector of the dual space, which satisfies the relations
H{0lacy =0, c=1..,s k<O (5.3)

For ¢ =1, ..., s denote by ¢, (z) the series

o, (2) = Z Aen 2" (5.4)

n<0

and by el the linear operator C* — C given by the relation
el (ey) = e

Define linear operators

a A A~
d, = zen on = A(s) A(s) C 1
(2) exp(nzwnz)q SADRCE], c=1,..s5
q)(z) = Zq)c(z) X e A(S) — A(S) ® ‘/’
®*(2) :ZSOC_(Z) DTN ®er A(S)®V_>[\(s)®c[z]‘
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For instance, for any |[v), € A®)

" (2) (v} ® 2* @ ec) = 27 (2) 27 (2) v,

O M (z) =g exp )y — a;’" 2"

n>0

where

For any |v). € A® consider the matrix element 7y (|v)y) € VEN,
v ([v)e) = {0[(@(2n) © 19V TD) - (B(22) @ 1)@ (21)[0)s

which we shortly denote by
Tn([v)e) = 0[P (2n) P(22) - - - P(21)|v)+ (5.5)

In components,
(o)) = S 0@y (en) - By (210Nt - oy © ... Dy

The commutativity

(I)b(Zl)(I)C(ZQ) = (I)C(ZQ)(I)b(Zl) (56)
implies that the matrix element 5.5 belongs to the space Ai’N. Indeed,

O—ij( Z +<O|"'(I)Cj(zj)"'q)ci(zi)"'|U>+""®€Cj®"'®eci®"'>:
1
= Z HO]- - D (25) - Py (25) - )+ B, @R, ®... =

= > 0D (z) Do (2) V) B @R, ®

c1,..,cN=1

In the last equality we change the indices of summation ¢; by c;.

Our goal is to pull back the Yangian action 4.17 in AiN through the map 7y. The
dissection of the relation 4.17 shows that the application of each Yangian generator to a
vector |v), € AiN can be decomposed into several steps. First we present the symmetric
tensor [v), € A" as an element of (Clz;] ® C*) @ A" for each tensor component,
producing an equivariant family of vectors, which can be completely described by the
element of V @ ATV ~ (Clz;] ® C%) @ AN ™" — the decomposition of [v), over the
first tensor component. Then we apply the power of Heckman operator DZ(N) to the i-th
vector of this equivariant family and get another equivariant family. The last step is the
symmetrization — the sum of all members of the equivariant family.

Denote by ¢y : Ai’N - Ve Ai’N_l the decomposition of the symmetric tensor v over
the first tensor component,

LN (Z Jin(2) @ -+ @ fan(zn ) Zflk ® (for(r2) ® - @ fan(ry))- (5.7)
k
Here fi,(2) and fjr(zx), j > 1 are C*® valued polynomials.
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Lemma 5.1 . We have the following equality of linear maps A® = Ai’N:
(7~TN,1 X 1) <I)(Z) = LN7~TN. (58)

Proof. Applying both sides of 5.8 to a vector |v); € A we get the tautology: both sides
are equal to

01 (2n) B (1) B(2) B (2) )
L]

For each tensor u € V' ® Ai’N_l, symmetric with respect to diagonal permutations of
all tensor factor except the first, denote by En(u) its total symmetrization

u) = ZUU(U)’ (5.9)

where 0,; = K;; P;; is the permutation of i-th and j-th tensor factors. On the other hand,
for each F'(z) € A® @ V define the element S(F(z)) € A® as the formal integral

SP() = 5 p T PG, (5.10)

which counts zero term of the Laurent series. The following lemma establishe the map S
as the pullback of the finite symmetrization. This is the crucial point of the construction.

Lemma 5.2 For each F(z) € ARV and any natural N we have the equality of elements
of AN

En(Tn_1®@ 1) (F(z)) = anS(F(2)). (5.11)
Proof. Let F(z) has the form

— ti(z) ® €, F.(z) e A® @ C[2].

Consider first the LHS of 5.11. This is the symmetrization 5.9 of the tensor

S

Z +<O’(I)CN(Z'N) e (DC2(:C2)F61 (£K1> “Cey @ ... R e,

ct,.en=1

which can be written by means of proper changes of summation indices as the sum

Z Z O|(I)CN xN) 'q)6k+1($k+1)q)ck—1(xk—1)"'©62($2)"'F0k($k) “Cen ... Q€.

k=1 c1,..,cn=1

Inserting in each summand the corresponding product
1=, ()P, Y(xy)
and using the commutativity (5.6) we rewrite it as

N s N
Z Z +<O‘H (ch (ZIZ']) ’ qD;cl(xk)Fck (xk) ey @ Qe =
j=1

k=1 c1,..,cn=1

N s N .
) 1 o (2)Fe(2)

Z Iri o dz —|—<0|H ®Cj (xj) . kz_—xk “ecy ®R...Q €, - (512)
k=1 c1,..,cn=1 k j=1
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The RHS of 5.11 is
1 il dz
o0l 2@) § Co R e),
j=1

In components it looks as

2%@2 Z O|HCI) (; ]{ P (2 )(I);l(z)Fa(Z> “ley D Qe (5.13)

a=1 c1,..,cn=1

The normal ordering of the above matrix elements assumes due to 5.3 the move of all
¢, (2) to the left vacuum using the relation

e)en(2) = () + 125 ) 2l (5.14)

z

which follows from 5.1. In particular, the formal integral in 5.13 can be regarded as a
contour integral, where the contour C of integration encloses all points x;. Since

{0y (2) =0,

we arrive to the expression

zzm/

k=1 c1,...en=1 20wy,

dz ®, ' (2)F., (2)
O|Hq)c] \%\ 1_—1_:'601\7 ®...®6017

which is identical to 5.12. [
We now apply statements of Lemma 5.1 and 5.2 for the construction of a pullback
of the Dunkl operator.
Let D: A® @ V — A® @ V be the linear map, such that for any F(z) € A®) @ V

~ 1 d
DF! )(z) = azdz (1) 27rz ?{ =l Z )(€)¢(2)(Z')F(1)(€) (5.15)

Here the upper index (i), i = 1,2 indicates in which tensor copy of C* the corresponding
vector lives or an operator acts. In components,

D(Ful2) @ a) = (azdz - 74 Z 1 EY: 5)@3(@@4%(5)) ®cs

We stat(e ghat the operator D is the pullback of the equivariant family of Heckman oper-
ators DiN .

Proposition 5.1 For any F(z) € A® @ V we have
(Fnva1 @ ) D(F(z)) = DV (A1 @ 1) F(a) (5.16)

Proof. The only nontrivial part is the pullback of the difference part of the Heckman
operator. The difference part D%N) of Heckman operator D§N) in the space V(1) ®A‘1N_1,
where V(z1) = C[z1] ® C*, can be described as the composition of three operations. First
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we include into V(z1) ® V(z2) ® Ai’N_Q by means of 1 ® ty_1, then apply the operator
1— Ky

T1 — T2

EN*l?

and finally sum up over all the variables except x; by means of the summation

N 1-K
DgN) — By, o 12

[¢) 1®LN—1
Ty — T2

The pullback of the inclusion 1®:y_; is @ (z5) due to Lemma 5.1, the pullback of Ey_;

dxo 1-K 1-K
S j[q)*( )(932)—, the pullback of the operator 2 is this very operator 2
To 1 — T2 T1 — X2
We see that the pullback of the difference operator DgN) has the form
- d 2 F —p® FO
271 To T1— T2

Any matrix element of the ratio inside the integral is a polynomial on z; and x5 and
can be equally decomposed into a series either in the region |z;|< |z2| or in the region
|z1]|> |z2|. In the region |z;|< |x2| in the first integral

T dl’g #(2) @(2) <$2)F(1)(I‘1 dxg _ F( )(.Tl)
. ¢ (1'2) Spc
211 To T — Xo 2772 :L‘l — X9
we have only negative powers of x5 and this integral vanish. Thus we get (5.15). U

Let Eq, € End C?, be the matrix unit, Eup(ec) = 0peeq. Denote by &, the operator
I1R1QEL: AWV - A V:

EwF(2) = Fy(2) ® eq.

Fora,b=1,...,sand n =1, ... set

Too = 5 § Lo ()aD () (5.18)

2m z
Summarizing the statements above we get the following result [27]

Theorem 5.1 The operator Ty ,,see (5.18) is the pullback of the Yangian generator top .,
see (4.17), (4.2):

TNTabn = tabnTN for any N e N.

In particular, the operators 5.18 form level zero representation of the Yangian Y (gl,) in
A®). Here we use the property
mNEN Ker ﬁ'N =0 (519)

of the ring of symmetric functions which we assume to be known.

5.1 Hamiltonians

In this section we provide explicit expressions for the first few Hamiltonians constructed
by means of the procedure (5.18). We present the expressions for the first H, = ! in
terms of the Yangian generators t,, in representation (4.17) :

_ za: taa,1 + % Xb: tab olba0 — g Z taa0; (5.20)
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Ztaa2_ztab0tbal+sztaal+ Ztabotbc()tcao

abc

2s 252 — 1
_3 — tab,Otba,O + 6 ; taa,Otbb,O + 6 ; taa,O;

(5.21)

where s is the number of spin variables, we mean that all summations are from 1 to s.
On the other hand, the Hamiltonians can be obtained as elements of the ¢-determinant
(4.4). Consider the representation of the g-determinant :
A A A
q det ¢(u )_1+—°+—1+—2+
The elements A; can be expressed in terms of ¢, ;.. Explicit expressions for Ay, Ay, Ay
are presented in Appendix 3. The Hamiltonians can be rewritten in the following form:

1 1
Hy=—-A; + §A§ - EAO, (5.22)
1o, 1., 1
H2 — AQ - AOAl + Al + gAO - §A0 + EAO (523)

Replacing ¢, in (5.20),(5.21) by its representation (5.18) we obtain the expressions for
the pullbacks 4, 7% of the first Hamiltonians (4.18) in A®)

Proposition 5.2 The Hamiltonians 74, and 76 are the pullbacks of the Hamiltonians
(4.18) and have the following form:

A=y f d§s0; (©) + 5 (a3~ a0) (5.24)

H = %@—aﬁﬂl_ozzjff% ¢ (€)* +ala—1) Z%dg% #a (6)'+
Y 75 Cf F (OO 402  Ten OO0l O+

k
0> F e 0k (5 §,c) () ()25 (€)24(6)

a>b keN
(5.25)

Here ag = ) ._, a.o. The same expressions are presented in [7].

5.2 Classical limit

In this section we investigate the classical limit of the Hamiltonian (5.25). In the spinless
case it leads to the periodic Benjamin-Ono equation as we explain in section 4.1. By
introducing 8 = é and multiplying (5.25) by /3, we obtain:

g — 75 %soa(s)(sog(s)f L B- ) 74 %%@«o;(@)' 9> 74 D )y (ot ()

Y fEaodory § Sl Zk(gk )cbba(n)cbab(s),

a>b < 677
(5.26)
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where for convenience we denote ®,(z)®, ! (z) by ®u(x). Introducing the classical vari-
ables o, ,, n € Z with Poisson bracket relations

{O‘c,m ab,m} = n50,65n+m,07 (527)

combine them into generating functions

Z B ) =Y @™, and u(2) = ¢ (x) + ¢, (2).
n=1

Then

{6 (@), 8 (1)} = 5% (6%(2), 6 ()} = 0.

{¢a(@), d(y)} = 0" (2/y) Oap-

Denote by V,(§) the classical counterparts of the vertex operatosr ®,(§) satisfing the

or

relations
]
and y
(=@ 0} = =52 {6 (@), ()} = 0. (5.28)

1—

As before, we use the notation V,;(€) for V,(€)V, 1(€). Set
dg

A3 7{§ @ (©) +Z]4 S ()i ()i ()
Zj{ dfdn )¢b(£)2k(f]—’;+z—k) ValmVa(£).  (5.29)

a>b

HI@

%Cl —

The operator #°! is the classical limit of the Hamiltonian (5.26) (8 — 0). The rule
between the quantum commutator and Poisson bracket is 37, ] — { , } and the
classical variable ¢,(x) correpsonds to By, (z) + ¢ ().

Proposition 5.3 * The equations of motion determined by the Hamiltonian A are

i) = a6 + (a5 ) (@) + gt (6 @)’
+ g Gl @) + S (Vg (6 @) ~ @ eva))) =

b#a

)+ (g ) @) H2 T g (@)’
2 Zwa% (v,;;wa% (cbb‘(x)vab(x))*) :

(5.30)

*For a formal series f(2) = Y,z fn2" we denote by fT(2) the series f+(z) =32, o) fu2" = § (if(f/)gé
and by f~(2) the series f~(2) =32, o fu2z" = ¢ ({_(Eg)/df)g
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+;(¢a<x>m<> v (@ @) = (6 @vate) )
. 2 - 1Nt — (o7 (2 7)1 x)) )
;(¢b< Wala)eg (@ @Vae) - (@ @vai) )

Remark Unlike the Yangian generators the Hamiltonian (5.25) does not contain dual zero
modes g.. The same holds for the classical limit, where we can freely use the operators
Ve(€) = exp Y, o, 2o instead of V,(¢). The Hamiltonian and the equations of motion
do not change, while the brackets (5.28) turn into

(6@ W) = -8 (), ) o

xT

The quantum system is integrable: it has an infinite number of integrals of motion
that can be obtained from the g-determinant of the Yangian generator function Tp,(u).
It is natural to assume that the classical system is integrable as well. In particular, it
should admit a Lax pair presentation. Consider the operators L and M:

Lf= z— ) + Z Va( V) ()7,

My = (63) £ + 23 (655 () F2) + 2 Vi) (65 (2 () ()
b b

(5.32)
They act on the space of analytic functions

f(z)=fo+ fiz+ 22+ ...,
where coefficients f; are polynomials in o, ,, where n < 0.

Proposition 5.4 The operators L and M (5.32) represent a Lax pair of the classical
system (5.29):
dL

T =[M, L].
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6 Fermionic limit for spin system

Let H® be the algebra of s free fermion fields. It is generated by the elements v, and
* s wheren € Z and ¢ =1, ..., s, which subject the relations

wanwbm + wbmwan =0, ¢2n¢;m + ¢;m¢2n =0,
wanqwb;m + w;mwan = 5ab5n,fm-

The algebra H* is graded with
deg wcn = deg w:n = —n. (62)

The algebra H* admits a family of commuting automorphisms Qc, c=1,...,s given by
the relations

(6.1)

Qc(¢bn) = ¢b,n—5bcv QC(¢Z’n) = ¢g,n+ébc' (63>

Let F* be the left representations of H?® , generated by the vacuum state |0), and F** be
the right H* -module generated by the vacuume state (0|, such that

(0[0) =1
and
Yen]0) =% 10) =0 c=1,..,s, n>0, m>0, (6.4)
(0|tben, = (0|5, |= 0, c=1,..,s, n<0, m<O0. '
We use the following fermionic normal ordering rule:
Dok : 77Z}:n¢dm7 m > 0
_¢dm¢cn> m <0

It is compatible with relations (6.4).

The automorphisms 6.3 define invertible linear maps Q. and Q. ' of the Fock space
to itself which are compatible with these automorphisms and anticommute for different
indices ¢; and cs:

Q(2]0) = QM (@)ukol0),  Qel]0) = Qe(@)eie-1]0),
01Q." = (0l (01Qe = (0f¢co,

so that for any x € H® and |v) € F* we have
Qe(@)lv) = Qe Q' v). (6.7)
Indeed, for |v) = y|0) the RHS of (6.7) equals

(6.6)

QurQ; o) = Q@ (y10) = Qe (2Q: (W)o10) ) = Qulw)ytrtsthe,110) =
= Qe(@)y (1= Y 19{1) [0) = Qe(2)3]0) = Qe(w)[v).

In the following we use the distinguished product of s such maps and automorphisms

A ~ ~

Q:QsQla Q:QsQl (68)
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In particular,

<O|Q_1 = <O|¢:1 o '¢T,1’ Q_1|O> = @D:,o o ‘¢T,0|O>:
<O’Q = <O|ws,o . '¢1,0, Qm) = ws,—l e '1/11,71‘())-

Denote by H?® (z) the space of Laurent series
D hna" € H(2), (6.10)
neZ

where each coefficient h,, is a series

11 21 22 31 32 33
hn:E ak—i—g akal%—g ay a;jca,; + ...
k Kl

klm
where a)/ are either 1., or 1*, for some ¢ and n, such that the matrix coefficient (¢|h,,|v)
is well defined for any ¢ € F** and v € F*. 5 We can assume for instance all series h,, to

be fermionic normal ordered according to 6.5, h,, = :h,:. We also use the notation F*(z)
for the space F* @ C[z,27]].
Let W.(z) and W¥(z) be the following elements of H? (2),

Vo(z) =D ez, Wi(z) = 92" (6.11)

neZ ne”L

The field U (2) is of total degree zero, and the field W’(z) is of total degree —1, once we
set deg 2z = 1. The relations 6.4 imply the commutativity

Ve(z)Wa(y) + Va(y)Ve(r) = Wi(2)Wo(y) + Vay)Vi(z) =0 (6.12)

and normal ordering rules

Ve(z)Wa(y) = We()Waly):,  Wa(z)Wa(y) = Wi(x)Pa(y):,
* . * : (sc
(@) Uily) = W) Vyly)i+ - “— w<y, (6.13)
: : e
U (2)Wa(y) = Vi(z)Waly): + ; —d:v r <y.
which imply the relation
1 1
— v = — U (w)W =1. 14
7 | vwwies = o [ e (6.14)

One can also see that

Q (V.(2)) = 20,(2), Q (Ui(2)) = 2710 (=), c=1,..,s.

Boson—fermion correspondence says that the space F* is a representation of the affine Lie
algebra gl, of level one. The degree —n generators E,;,, of gl,, where a,b =1,...,;s and
n € 7 satisfy the relations

[Eab,na Ecd,m] = 5bcEad,n+m - 5adEcb,n+m + nén,—méadébc

SFor instance the monomial 2" (3, - Vi te,—k) & HE (2).
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They are presented in End F*® by operators

e D D (6.15)

k+l=n

where : : means fermionic normal ordering (6.5). The generators
Apn ‘= Ebb,n
form the Heisenberg algebra #!ls],

[ab,na ac,m] = nab,c(sn,—m

so that
acr|0) =0, (0lac; =0, c=1,..s k>01<0.

On the other side of boson—fermion correspondence we have the relations:

U, (2) = 2% exp (Z a;—nz”> exp (Z a;n ") Qe

n<0 n>0
_ Qe Qe _
Ur(z) =z "%exp | — E —2"|exp | — E =R QL
n n
n<0 n>0

The element

Zaco = ZZ e, (6.16)

c=1 k€Z

is central in gA[S and satisfies the relation

Qao@Q' = ag + s.

The Fock space F* admits the orthogonal decomposition into direct sum of eigenspaces
of operator ay,

F° = ®OnezF s where N ={lv) € F°: aplv) = N|v)}. (6.17)

The relation 6.17 implies that
QFy =Fn_s (6.18)

s

In the following we use the notation 7y for the projection of F* to F3; parallel to other
eigenspaces of ag:
TN|U>> = 5N,k . ’1}> for |U> € ‘Flj (619)

Let ¥(z) and ¥*(z) be the following elements of H®(z) ® C* and H* (z) ® C**

correspondingly,
Z V. (2) ® e, Tr(z) =) Wi(z)®@e,. (6.20)

The field ¥(z) defines the map from F* to F*(z) ® C*,
Z U.(2)|v) ® e,
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which we denote by the same symbol W(z). The field ¥*(w) defines a map from H?* (z)®C?
to H* (z,w),

¥ (w) (z er ) S W)

where H? (z,w) is defined in the same way as H? (2) (6.10). Here we regard el as the
linear map el : C* — C, such that e} (eq) = 6.4
For any |v) € F* consider the matrix element

m([0)) = (O] (¥ (2) @ 19V D) o (W(25) @ 1) (21) o),
which we shortly denote by
T ([v) = (0¥ (zy) ¥ (22) - - - ¥ (1) v). (6.21)

In components,

s

(o) = Y (01T (an) - Ve (2)0) e @ .. @ ey

c1,.,cN=1

The commutativity 6.12 and the properties of the left vacuum 6.4 imply that the matrix
element 6.21 belongs to the space AN Note that the map 7y factors through the
projection 7x (6.19),
TN = TNTN

and equals zero for any Fj, with M # N.

We are going now to construct the pullback through the maps 7y of the components
of the Yangian generators.

Denote by ty @ A*Y — C*[z] ® A®' the decomposition of the antisymmetric
tensor v over the first tensor component, given by the relation 5.7. Denote by my_1; :
(H2(2) ® C*) @ F* — Cla, .o, an, 2,271 ® C*®*N the map defined as

Tn-11(F(2) @ [0) = (0[®(zy) - - - ¥ (z2) F(2) ).
Lemma 6.1 . We have the following equality of linear maps F* — A" :
7TN,1,1‘II(Z) = ILNTN. (622)

Proof. This is again a tautology like in the proof of Lemma 5.1. U

For each polynomial tensor C*[z] € V ® AN antisymmetric with respect to diag-
onal permutations of all tensor factor except the first, denote by Ay(u) its total (nonnor-
malized) antisymmetrization

An(u) =u— Z o1;(u). (6.23)

On the other hand, for each F(z) € H® (2) ® C* define the element A(F'(z)) € H® as the
integral

A(F(2)) = ﬁ / L / ) du%. (6.24)
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Remark. The integral over z is actually formal. The form 6.24 indicates the following.
Assume that F(z) depends on a parameter w. Then the contour C' of integration over z
should not enclose the point z = w. One can always assume the condition |w|> |z|.

Let an element F'(z) € H® (z) ® C*® satisfies the following conditions:
(7) n1(F(z) @ |v)) is a polynomial on z for any N € N, v € F* (6.25)
(17) deg F(z) =0 (6.26)

Here we assume that dege. = 0 for any e. € C®.
The following lemma establishes the map A as the pullback of the finite antisym-
metrization. This is the crucial point of the construction.

Lemma 6.2 For each F(z) € H*(2) ® C° satisfying the conditions 6.25 and 6.26, any
|v) € F* and any natural N we have the equality of elements of AN

Anmn_11(F(2) @ |v)) = nnA(F(2))|v). (6.27)

Proof. Let F(z) has the form
F(z) =) F(2)®e,  Foz) €M (2)
c=1

Consider first the LHS of (6.27). This is the antisymetrization 6.23 of the tensor

S

Z <O|\IJCN(1:N) e \PCQ(x?)FCl (Iﬂ‘?)) "l & B ey

C1,..,cN=1

which can be written by means of proper changes of summation indices as the sum

N s
DD 01y (@n) - W (1) Wy (@ro1) -+ Wy (21) Fo (1) |0)
k=1 c1,..,cN=1
“€e Q.. ey

Using the relation

F,
/ dz M = —F,, (z1),
20x g

we rewrite the LHS of (6.27) as

N s
DD Y {01y (an) - W (@) Wy () - Uy (0):
k=1 c1,..,cN=1
1 F.
— dz ’“(z)|v)~ecl®...®ecN.

270 S yorg,, Tk — 2

Using (6.14), we insert the integral:

—1

v v =1
| VeV

uOx
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into each summand of the k-th group. Then the LHS of (6.27) takes the form

/dz /du (0| H v, M|v>-ecl®...®ew:

>i> T — 2
20w, uOx N2iz1
|z—xk|>>|u—xk\

/dz / du (0] T \I/Ci(xi)WW)-eq@...@ew.

: — Z
20z, uOxg, Nziz1
lz—a > |u—z4|

(6.28)

Now in each summand we move the contour of integration for z close to the point xy,

crossing the singularity at z = u. Then the integral in every such summand transforms
into the sum of two integrals,

/dz / du (0] T W, () Sl Feel)

u—z
o wCo N>i>1
|z—zg [>[u—zy|

/dz / du (O] T] @, () >FC’“(Z)|U>+ (6.29)

Si> u—z
zO0zg uOxy Nzizl
lu—zk|>|2—2k]|

/ /du ©Of T e, ZMM

Si> u—z
20xg uOz N2iz1

In the first integral, see the middle line of 6.29, after the change of the order of integration
we observe its vanishing due to condition () of 6.25: there is no singularity of the integral
at any point z = ;. We now conclude that the LHS of 6.27 equals to the double integral

Qm Z Z /dz/du()IH\I’cl 1M|U>'€Cl®...®€q\,

u—=z
k=1lci,...cN= 1z©zk ulsz N>i>1

or

BE Z Z /dz/du<0| H \I/Ci(xi)w|v>-ecl®...®ecw (6.30)

- u—z
k=lci,...cn= 1 uhz N>i>1

where the contour C' encloses all the points x; but does not enclose zero

On the other hand, the RHS of 6.27,

2m I] @) %dz/ YWFE),,

u—=z
N>i>1

in components looks like

(2mi)? Z Z O|H Ve, (s Y{dz/ du u_z(z)|v>-ecl®...®eCN.

k=1ci,..,cn=1 N>i>1
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The region of analyticity of any matrix coefficient (§|[]ysi>1 Ve, (2:) V7, () F(2)|v) s
0 < |zn|< |zn_1]< ... < |21]< |u|< |z] so the integral over z can be replaced by the
contour integral over the contour enclosing all x; and zero. Deforming this contour we
see that the RHS of 6.27 equals to the sum 6.28 plus the integral which enclose zero and
not the points x. To prove the equality 6.27 it is sufficient to verify that each integral

/dz/du o T w. u)_Fj(Z)|v> (6.31)

200 uOz Nziz1

vanishes. In the latter integral all singularities at the diagonals z = x; and v = z; are
out of the domain of integration. Thus the vanishing of these integrals is equivalent to
vanishing of the vector valued integral

/dz/du P Yo (ke (z) (6.32)

zO0 uOz

o, (2) s Ju|< |z| and all the singular-
ities are poles of finite order on the diagonal z = u, so that the relation

The domain of analyticity of the expression W7 (u)F,

(2 = w0 (W) e, (2) = (2 — w)" Fo (2) 5, (u) (6.33)

holds for sufficiently big N, where the sign is chosen according to parity of the field F,, ().
The relation (6.33) implies that the analytic continuation of ¥} (u)F,(2) to the region

Ck

[u|> |2] is £ F, (2)¥} (u). By definition 6.4 of the vacuum state and the related rules of
the normal ordering (6.5) the integral 6.32 can be formally rewritten as

/ (012 (2) £ (02, (4) (6.34)

where the sign depends on the parity of F,,(2) = >, ., fn2" and

ckf leckn ) ck+ chkn

n<0 n>0

In Fourier modes 6.32 looks as

S ok n EY fonthln

n<0 n>0

The first sum vanishes due to 6.4. By assumption, deg F, (z) = 0 thus deg f,, = —n. We

then see that in the second term all f,, have positive degree and if we assume them to be

normal ordered they contain in each summand either v, or ¥}, with n < 0 at their left

end. Thus (0|f_, =0 for n > 0 and the integral 6.32 vanishes. O
Define an operator D : H® (z) ® C* — H?® (z) ® C*® by the relation

DF(z) = aziF(z)—l—

dz
z /
(277'7/)2 o0

(2) W () — g2 1) (6.35)
|w|<|z\ uOw

(u—w)(z —w)
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Here upper indices (1) and (2) indicate tensor components where corresponding operators
act. In components,

DF.(2) ®e. = QZ%FC(z) ® et
7 < w U (0 Uy (w)Fe(2) — Wp(2) F(w) .
a2 /||| du [ du v REEE T

By means of Lemma 6.2 we now can identify the operator D as a pullback of the
equivariant family of Heckman operators Dl(N) acting in the space of partially antisym-
metric tensors

Proposition 6.1 For any F(z) € H* (z) ® C*® satisfying the condition 6.25 and 6.20,
lv) € F* and N € N we have the equality

mn—11(DF(21) @ |v) = DMy 11 (F(z1) © |v). (6.36)

Proof. First we note that once the element F'(z) € H*® (2) ® C® satisfies the conditions
6.25 and 6.26, the same is true for the divided difference

U (w)FV(2) — 0O (2)FD (w)

The property 6.25 is valid because both the differential and difference derivatives preserve
the polynomial property. The property 6.26 is evident: the difference derivatives are
homogeneous of degree zero. We thus can use Lemma 6.2. Now the rest of the proof is
identical to the proof of Proposition 5.1. O

Note that the application of the operator D to some F(z) € H*(z) ® C*, which
satisfies the conditions 6.25 and 6.26, preserves these conditions by the same reasons
of homogeneity and preservation of polynomial spaces by both difference and differen-
tial derivatives. This gives rise to the formulas for pullback of sum of powers of Dunkl
operators.

Let E, € End C®, be the matrix unit, E.(e.) = dpeeq. Denote by &, the operator
1® FEy: H (2) ® C* — H? (2) ® C*:

EnF(2) = Fy(2) @ e,.

Fora,b=1,...,s and n = 1, ... define the element T,;,,, € H° by the relation

1
Tab,n - AgabDn‘Il(z) - _/ dz 7:1b,n~ (637)
T J 200
Here Tgap5, is the n-th order density defined by the formula:
1 U*(u)Ey DY
Tavn == | du (WD (2) (6.38)
210 J o u—z

In Appendix we give expressions for the first densities for n = 0,1,2 in terms of normal
ordering fermionic fields and in terms of generators of the affine Lie algebra gl , see (6.15).

Summarizing the statements above we establish the operator T, ,, as the pullback of
the Yangian generator t4,, in AP,
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Proposition 6.2 For any |v) € F° and N € N we have the equality

7TN(’:[‘ab,nh})) - tab,nﬂ-N|,U>-

We now reformulate projective properties of the Yangian action in the phase space of
finite-dimensional CS system, see Proposition 4.2, in terms of the constructed operators
in the Fock space.

Lemma 6.3 For any |v) € F° we have the equality

TN (Q)) = Wy ys - Ts([V))- (6.39)
Proof. The LHS of 6.39 reads

mn(Qv)) =(0[® (zn) - - W (22) ¥ (21)Qv) =
(21 an) ™ (0[QE(rn) - ¥ (2) P (1) ]v) =
(@1 an) ™ (Olthso - 0P () - O (22) ¥ (21)[0).
The last line is precisely the RHS of 6.39. Indeed,

S

w]:Urs : 7TN+S(|U>> = w]:ﬂrs ’ Z <0|‘IJCN+S (xNJrs) e \ch2 (x2>\1jc1 (561)’1)> * €cq X...0 eCN+s

€1, ,CN4s=1
s

= (zran) T D (O oWy () - Wy (22) Wy (1) [0) - €0, @ - ® ey

c1,..,cN:1
Denote by T(u) the generating matrix of operators Ty,

T(u) = i Eu @ Top(u) € End(C®) @ H? [u™],

a,b=1

where

Tab(u) = 5ab + Z Tab,n u "

n>0

Proposition 4.2 and Lemma 6.3 imply
Corollary 6.1 The following identity holds
u—+1

QTu)Q ' = T(u—a—s) (6.40)

The equality 6.40 can be regarded as a recurrence relations which expresses each T, via
Adg(Tap k) for k < n. In particular, this means that

(Adg —1)""*(Tapn) = 0 (6.41)

and thus any operator A = T, can be presented as a polynomial of degree n + 1
A=Ag+apAi+ ... +al A, QA;Q ™ = A, (6.42)
where each A; is an element of H of zero charge. In its turn, the presentation (6.42)

implies
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Theorem 6.1 The operators Ty, satisfy Yangian relations (4.3).

In particular, the coefficients of the quantum determinant ¢ det T'(u) form a commutative
family which can be regarded as the limits of the higher Hamiltonians of CS system.
Indeed, due 6.42, each Yangian relation is polynomial over ag and thus it is enough to
verify it on subspaces Fy;, which are eigenspaces of ay with eigenvalue N for N big enough.
But here in the projection 7wy we deal with polynomials of any desirable degree where the
relation becomes nontrivial.

Analogously to finite-dimensional case, see 4.30, the transfer matrix T(u) can be
renormalized by means of central operator a( in such a way that the new transfer matrix
will commute with ) and thus acts in equal way in each sector F3 of the Fock space.
Here we set

T(u) = f(u,a0) T <u n a()%), (6.43)

where v = o + s and

F($+§+1>F(“T+1+1)
F(“T“+§+1>F(g+1)
Comments. Denis Uglov presented two construction of the Yangian action in fermionic
space JF*, starting from Yangian action in the phase space of fermionic Spin CS system.
The paper [57] deals with projective type construction while the work [58] develops an
inductive limit approach. Our paper has a close connection with [57].

Initial data of the present work and that of [57] are the same: finite-dimensional
representations of Yangians realized via polynomial representations of degenerated affine
Hecke algebra. In this setting D. Uglov uses projective properties of these action and
renormalize the transfer matrices of Yangian action in order to form the projective sys-
tem. He identifies zero charge subspace of F* with the projective limit of A>" and defines
the Yangian action on J{ via this identification. The action is extended to other sectors
by means of natural identifications of these sectors with F;. The resulting Yangian action
is given by implicit formula, analogous (but not the same!) to 4.34, and actually coin-
cides with renormalized finite-dimensional action on stable wedge. Using this description
and representation theory of degenerate affine Hecke algebra, D. Uglov suggested precise
decomposition of the Fock space into direct sum of Yangian irreducibles.

Our construction can be regarded as a free field counterpart of Uglov investigations.
However, there are certain differences in two approaches. First, we use different projec-
tions from the Fock space to spin CS phase space A*". They differ by the power of Q.

flu,b) = (6.44)

Namely, Uglov projection 7y, @ F§ — A®N* can be expressed via 6.21 by the relation

Tns = TnsQ .

The use of our projections allows to lift the initial action to the whole Fock space without
renormalization. However, after renormalization 6.43 both actions should coincide.

Second, in his normalization procedure [57, Proposition 10.2] Uglov lost the shift of
spectral parameter which led to disagreement in final results. This disagreement does
not affect the decomposition into Yangian irreducibles, but changes the parameters of
irreducibles. Namely, one should twist Uglov irreducible components by certain automor-
phisms of the Yangian. Surely, after the mentioned changes Uglov decomposition can be
equally used in our interpretation of the model.
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Conclusion

In this work the limits of the Calogero-Sutherland system when the number of parti-
cles NV tends to infinity were investigated. We studied the bosonic and fermionic limit
corresponding to the symmetric and antisymmetric wave functions of the system.

For the fermionic limit of the scalar system, we derived a limit expression for the
Dunkl operator via free fermionic fields, which allows us to present the construction of
commuting Hamiltonians in the Fock space. In the case of the value of the coupling
constant 8 = 0, we have presented an explicit formula for the generating function of
Hamiltonians that differs from the previously known ones. This result may find some
applications in such areas as knot theory and combinatorics of Hurwitz numbers. In
case of arbitrary value of coupling constant to find the precise generating function of
Hamiltonians is an open problem.

For spin system we realized the bosonic and fermionic limit in a multicomponent
Fock space. We introduced the maps to finite system and construct the pullback of finite
Dunkl operators in terms of vertex operators in bosonic case and in terms of free fermion
fields in fermionic case. We constructed the corresponding Yangian representation in the
Fock space, which may have nontrivial applications in the representation theory.

81



Appendix

Here we present the expressions for the first densities Tapn(2) (6.38) n = 0,1,2 for the
Yangian generators. There will be given two types of expressions for each density, the
first answer is a normal ordered combination of fermionic fields W (z), ¥}(z), the second

is not normal ordered, it is given in terms the affine Lie algebra gl, generators.
Now we introduce several notations. Denote by T%(z) a coefficient of ! in Top 14(2):

=0

Denote by Eu(z) a generating functions for the elements of the affine Lie algebra QT [, :
z) = Z Eupnz" = 2V (2)W(2):.

For a formal series f(z) =, ., fn2" we denote by f(z)+ the series

n f(u) n fu)
2); = ;fnz = / du p— flz)- = ;fnz = / du P
) uf BEs

For n = 0 we simply have

Forn=1

Tana(2) = aTpy (2) + T (2).

We distinguish the answers for diagonal T,,,(z) and nondiagonal part 7g,(2) , where
a # b. Firstly we present the expressions for nondiagonal elements a # b as normal
ordered combination of fermionic fields:

T8 ) = W) (e,

szy* ) (U (2)W,(2))_ + szy* ) (W (2)Wy(2))_
+(s+1) Ui(z) 23\11 (2) | — Wu(2) zg\ll*(z) :
@ 0z ° B b oz ¢ N B
The bosonic answer has the recurrent form, we express it from T5"(2) (6.1):

a

T8 = [ o BT ),



T0-Y [ R [ T n -

=1 wO0 =1 wO0
lw|<|z] lw|<|z]
zdw 0
—/mﬁ; (2) Eaa(w).
wOz

For diagonal elements in case n = 1 we present the answers in the same way, firstly as a
normal ordered combination of fermionic fields:

TS E) = Wi ()e W),

T (2) =) 205 (2)Wa(2) (U5 (2)Ws(2))_ + ZZ‘I’ (W3(2)Wa(2))

_ Z Wy (2) (Z%WZ(Z)) +(s+1) Ti(2) (z%llla(z)) - W, (2) (Z%WZ(@) ) 3

Then the recurrent answer from previous densities in terms the affine Lie algebra g/;\[S
generators:

T8 = [ s BT+ [ M TEw)

w — 2) w— 2)
wOz wOz
z dw zdw
7;1620(Z> - Z / (Z _ w) 7;(‘)10 Z / w) 7;%0(2>E66(w)_
c=1 _° =1 w
i< ul <

- 0 ; 2w o _qoag,
;(ﬂé =7 Eeo(2)Toe"(w) — Tee (Z>)+/(wz)27:31< ) = TO1(2).

Forn =2
Tab2(2) = &*T02(2) + aT ' (2) + T30(2)

We split 7, (2) into two summands :
T (2) = (Tﬁ’l)'(Z) + (T )" (2)-

a a a

Here ( )’ (z) means that firstly we apply z-= a and then the difference part of the Dunkl
1
operator (T.;1)"(2) backwards.

T’ (2) = W5 (2) (z%)Q Uy ()

Zz\p* ) (s5rm) (@) IDICIAD (vegrme

4 (5 + %) v (2) (<2%>2 pr(z)> - (z%\lfb(z)> (z%lll:;(z))+ - %‘I/Z(z) (z%\ﬂb
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() () o ((-2) v0)

The recurrent formula from previous densities in terms the affine Lie algebra é\[s genera-

T80 = [ o BTy )

tors:

=1 woo =1 woo
lw|<|2| lw]<]2|
zdw 1
- / mﬂ% (2) Eqa(w)
wOz

Ta6) = [ S BT w4 [ (T2 4 2T ~ TR ) Bl

wO0

wOz
lw|<2|
zdw zdw 1
- —Eaa Ea - N § Eaa
[ B Eutw) — [ T8 B
w0 wOz
lw|<2|
zdw zdw 1, 09 |
——F — —F - =T - =T
+/(w—z)3 ab(w) / (z — w)? ab(w) 27:3) (2) 27:3) (2)
wOz wO0
lw|< 2|

For diagonal elements in case n = 2 we have more complicated formulas:

To'(2) = TW4(2) (%%)2 W, (2):

;(s + %) Ui (2) ((2%>2 tlfa(z)> ) + %Z Ve(2) ((2%)2 \PC(Z)> .
+ % Cz: U.(2) (zalllc(z))Jr - (Z%qja(z)) (Z%‘I’a(z)>+



c=1 c=1 c U))
wO0 wO0
/< ol
- (w/ % Eee(2)Tee () — 723’2(2)> + / %ml(w) — T’ (2)
=1 Aoz Wz
T ) = [ S BT )
3 [t (T < T ) Pt
0 wo0
(EER
zdw > zdw
- 5 Baa(2) Epp(w) — 3 By (w)
E—:wl) w(z —w) " bz—;wé (z—w)p
jwl<] wl<
o[ (T + g T - ) Bulw)
wl<l
zdw zdw
- —QEaa<Z>Eaa(w) - mEaa(w>
wwéz e wwéz o
#3 [ s (T - e ) B
sz

85



| [ T ) - [ R | - 3T + 5T

zdw zdw " zdw " 2,
+2w4 —(w_z>3Eaa(w)—2wo/Z (e 3T ( )+w4 —w(w—z)2Ea“( )+ T22(2).

The density 7;°(z) has a cumbersome form and we do not present it here. In scalar case
(s = 1) the matrix coefficient T} is a polynomial in zero mode of the scalar bosonic field:

1
T121’0 = 6 (2@8 — 3(13 + CLO> .

In scalar case the same is for higher orders: the matrix coefficient Tlnl’0 is a polynomial of
degree (n + 1) in zero mode of the scalar bosonic field [35].

86



References

1]

[11]

[12]

[13]

[14]

A. G. Abanov, P. B. Wiegmann, Quantum hydrodynamics, the quantum
Benjamin-Ono equation, and the Calogero model, Physical review letters, 95(7),

(2005), 076402

M. J. Ablowitz, A. S. Fokas, J. Satsuma, H. Segur,On the periodic intermediate long
wave equation, Journal of Physics A: Mathematical and General, 15(3), (1982), 781.

A. Alexandrov, A. Zabrodin Free fermions and tau-functions, Journal of Geometry
and Physics 67 (2013): 37-80.

I. Andric, A. Jevicki and H. Levine, On the large-N limit in symplectic matrix models,
Nucl. Phys. B215 (1983), 307.

T. Arakawa, Drinfeld functor and finite-dimensional representations of the Yangian,
Commun. Math. Phys. 205 (1999), 1-18.

H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Collective field theory,
Calogero-Sutherland model and generalized matrix models, Physics Letters B 347:1

(1995), 49-55.

H. Awata, Y. Matsuo and T. Yamamoto, Collective field description of spin
Calogero-Sutherland models, J. Phys. A29 (1996), 3089-3098.

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, Journal
of Fluid Mechanics, 29(3), (1967), 559-592.

D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, Yang-Baxter equation in
spin chains with long range interactions, J. Phys. A26 (1993), 5219.

F. Calogero, Solution of the one-dimensional n-body problems with quadratic and/or
inversely quadratic pair potentials, Journal of Mathematical Physics, 12(3), (1971),

419-436,

F. Calogero, Solution of a three-body problem in one dimension, Journal of Mathe-
matical Physics, 10(12), (1969), 2191-2196.

F. Calogero, Exactly solvable one-dimensional many-body problems, Lettere al Nuovo
Cimento (1971-1985), 13(11), (1975), 411-416.

I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine
Hecke algebras, Inventiones mathematicae 106.1 (1991): 411-431.

I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures. Annals of

mathematics, 141(1), (1995), 191-216.

A. Debiard, Polynomes de Tchébychev et de Jacobi dans un espace euclidien de

dimension p, CR Acad. Sc. Paris, 296, (1983) 529-532.

V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl.,
20:1 (1986) 62-64.

87



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[28]

[29]

[30]

[31]

C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans-
actions of the American Mathematical Society. 311:1 (1989), 167-183.

A. S. Fokas, B. Fuchssteiner, The hierarchy of the Benjamin-Ono equation, Physics
letters A, 86(6-7), (1981), 341-345.

G. J. Heckman, An elementary approach to the hypergeometric shift operators of
Opdam, Inventiones mathematicae 103:1 (1991), 341-350.

G. J. Heckman, A Remark on the Dunkl Differential —Difference Operators, In Har-
monic analysis on reductive groups. Birkhduser, Boston, MA. (1991), pp. 181-191.

G. J. Heckman, E. M. Opdam, Root systems and hypergeometric functions. I.
Compositio Mathematica, 64(3), (1987), 329-352.

G. J. Heckman, Root systems and hypergeometric functions. I1., Compositio math-
ematica, 64(3), (1987), 353-373.

H. Jack, I.—A class of symmetric polynomials with a parameter, Proceedings of the
Royal Society of Edinburgh Section A: Mathematics, 69:1, (1970), 1-18.

A. Jevicki, B. Sakita. Collective field approach to the large-N limit: Euclidean field
theories, Nuclear Physics B 185.1 (1981): 89-100.

Y. Kato and Y. Kuramoto, Exact solution of the Sutherland model with arbitrary
internal symmetry Phys. Rev. Lett. 74 (1995), 1222.

D.J. Kaup, T.I. Lakoba, Y. Matsuno, Complete integrability of the Benjamin-Ono
equation by means of action-angle variables, Physics Letters A, 238(2-3), (1998),
123-133.

S.M. Khoroshkin, M.G. Matushko, Fermionic limit of the Calogero-Sutherland
system, Journal of Mathematical Physics 60, (2019).

S.M. Khoroshkin, M.G. Matushko, Matrix elements of vertex operators and fermionic
limit of spin Calogero—Sutherland system, Journal of Physics A: Mathematical and
Theoretical, arXiv:1608.00599.

S.M. Khoroshkin, M.G. Matushko, E.K.Sklyanin, On spin Calogero—Moser system at
infinity, Journal of Physics A: Mathematical and Theoretical, 50:11 (2017), 115203.

S. M. Khoroshkin, M. L. Nazarov, Yangians and Mickelsson algebras. II, Moscow
Mathematical Journal 6:3 (2006), 477-504.

[. Krichever, O. Babelon, E. Billey, M. Talon, Spin generalization of the
Calogero-Moser system and the matrix KP equation, Translations of the American
Mathematical Society-Series 2, 170, (1995), 83-120.

I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford university press

(1998).

I. G. Macdonald, A new class of symmetric functions, Publ. IRMA Strasbourg, 372,
(1988), 131-171.

88



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[42]

I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, (Vol. 157). Cam-
bridge University Press, (2003).

I. G. Macdonald, Orthogonal polynomials associated with root systems. In
Orthogonal polynomials, Springer, Dordrecht,(1990), pp. 311-318.

Y. Matsuno, Recurrence formula and conserved quantity of the Benjamin-Ono
equation, Journal of the Physical Society of Japan, 52(9), (1983), 2955-2958.

M. G. Matushko, Calogero-Sutherland system at free fermion point, to appear in
Theoretical and Mathematical Physics

A. Molev, M. Nazarov and G. Olshanski, Yangians and classical Lie algebras, Russian
Math. Surveys 51 (1996), 205-282.

I. Moser, Three integrable hamiltonian sysems connected with isospectrum
deformations Adv. Math., 1976, 16, 354-370.

M.Nazarov, On the spin Calogero-Sutherland model at infinity, Representations and
Nilpotent Orbits of Lie Algebraic Systems. Birkhduser, Cham, (2019), 421-439.

M.L. Nazarov and E.K. Sklyanin, Integrable hierarchy of the quantum Benjamin-Ono
equation Symmetry, Integrability and Geometry: Methods and Applications SIGMA
9 (2013), 078.

M.L. Nazarov and E. K. Sklyanin, Sekiguchi-Debiard operators at infinity, Commu-
nications in Mathematical Physics 324:3 (2013), 831-849.

A. Okounkov, R. Pandharipande, Quantum cohomology of the Hilbert scheme of
points in the plane, Inventiones mathematicae, 179(3), (2010), 523-557.

M.A. Olshanetsky, A. M. Perelomov, Quantum integrable systems related to Lie
algebras, Physics Reports, 94(6), (1983),313-404.

M.A. Olshanetsky, A. M. Perelomov, Classical integrable finite-dimensional systems
related to Lie algebras, Physics Reports, 71(5), (1981), 313-400.

H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39, (1975),
1082-1091.

E.M. Opdam, Root systems and hypergeometric functions III, Compositio Mathe-
matica, 67(1), (1988), 21-49.

A.K. Pogrebkov, Boson-fermion correspondence and quantum integrable and
dispersionless models, Russian Mathematical Surveys (2003) 58(5), 1003.

A. P. Polychronakos, Exchange operator formalism for integrable systems of particles,
Physical Review Letters 69:5 (1992), 703.

A. P. Polychronakos, Waves and solitons in the continuum limit of the
Calogero-Sutherland model, Physical review letters, 74(26), (1995), 5153.

N. Reshetikhin, Degenerate integrability of quantum spin Calogero-Moser systems,
Letters in Mathematical Physics, 107(1), (2017), 187-200.

89



[49]

[50]

[51]

[56]

[57]

[58]

N. Reshetikhin, Degenerate integrability of the spin Calogero-Moser systems and the
duality with the spin Ruijsenaars systems, Letters in Mathematical Physics, 63(1),
(2003), 55-71.

P. Rossi, Gromov—Witten invariants of target curves via symplectic field theory,
Journal of Geometry and Physics 58:8 (2008), 931-941.

J. Sekiguchi, Zonal spherical functions on some symmetric spaces, Publications of
the Research Institute for Mathematical Sciences, 12(Supplement), (1977), 455-459.

A. N. Sergeev, A. P. Veselov, Dunkl operators at infinity and Calogero-Moser systems,
International Mathematics Research Notices, 21 (2015), 10959-10986.

A.N. Sergeev, A.P. Veselov, Calogero-Moser operators in infinite dimension, eprint
arXiv:0910.1984 (2009).

R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cam-

bridge (1997).

B. Sutherland, Exact results for a quantum many-body problem in one dimension,
Physical Review A, 4(5), (1971), 2019.
B. Sutherland, Exact results for a quantum many-body problem in one dimension.
II, Physical Review A 5.3 (1972): 1372.

K. Takemura, D. Uglov, The orthogonal eigenbasis and norms of eigenvectors in the
spin Calogero-Sutherland model, Journal of Physics A: Mathematical and General,
30(10), (1997), 3685.

D. Uglov, Symmetric functions and the Yangian decomposition of the Fock and Basic
modules of the affine Lie algebra si(NV), arXiv preprint g-alg/9705010 (1997).

Uglov D. Yangian actions on higher level irreducible integrable modules of affine é\[ N
eprint arXiv preprint math/9802048. — 1998.

90



