Silicon Photonics Research at IIT Madras

Bijoy Krishna Das Professor in Dept. of Electrical Engineering IIT Madras, Chennai – 600036, India

Research Profile

Lithium Niobate Integrated Optics (1996-2006)

IIT KGP \rightarrow Uni. of Paderborn \rightarrow Osaka University \rightarrow Lehigh University \rightarrow University of Paderborn

□ Silicon Integrated Photonics (2006-2021)

Dept. of Electrical Engineering, IIT Madras

2

Centre for Programmable Photonic Integrated Circuits and Systems

Program at a Glance

MeitY Approval	No. GG-11/15/2020-EMCD, dated 30 th Dec 2020		
Total Budget	Approved Total Budget	Rs 2,990.80 Lakh	
	MeitY Contribution	Rs 2,665.80 Lakh	
	Si2 Microsystems (in kind)	Rs 325.00 Lakh	
Date of Starting	30th December 2020		
Date of Completion	29th December 2025		
Project Location	Dept. of EE, IIT Madras, Chennai - 600036, India.		

Focus Area

- Microwave Photonic Signal Processing
- Linear Optical Quantum Computing
- □ Nonlinear Photonic Quantum Key Distribution

3

Centre for Programmable Photonic Integrated Circuits and Systems

BRICS Photonics

Centre for Programmable Photonic Integrated Circuits and Systems

BRICS Photonics

July 21, 2021

4

Program at a Glance

5

Multipurpose Programmable Photonic Processor (ASPIC+FPPGA)

IIT Madras Research Towards Field Programmable Photonic Gate Array (FPPGA)

Demonstration of an ultra broadband Programmable add-drop filter circuit in MZI configuration by integrating:

- > Two SWG waveguides
- > Two 3-dB power splitters
- Six microheaters
- Four grating couplers

input	H4 🔽 🖪 H2	bar/add
\times	H ₃	cross
		drop
	$H_1 = H_5$	

Characteristics	
Operating wavelength range	C+L band
Polarization	TE
Insertion loss (Passband)	~ 2 dB
Insertion loss (Reflection band)	~ 2 dB
Band extinction ratio	> 35 dB
Band-edge roll off	70 dB/nm
Switching power for $\boldsymbol{\pi}$ phase shift	54 mW
Thermo-optic tuning efficiency	22 pm/mW
Switching time	5 µs

Sumi R, Ramesh K, N. DasGupta and B.K. Das, "Ultra-Broadband Add-Drop Filter/Switch Circuit Using Subwavelength Grating Waveguides " IEEE JSTQE, vol. 25, no. 3, pp. 1-11, 2019

Centre for Programmable Photonic Integrated Circuits and Systems

E OF TECA

IIT Madras Research Towards Field Programmable Photonic Gate Array (FPPGA)

Demonstration of a programmable microring resonator (MRR) for Bistable Memory and Nonlinear Photonic Applications

Riddhi Nandi, Arnab Goswami and B.K. Das, "Phase Controlled Bistability in Silicon Microring Resonators for Nonlinear Photonics", IEEE JSTQE, vol. 27, no. 2, pp. 1-9, 2021

IIT Madras Research Towards Field Programmable Photonic Gate Array (FPPGA)

Demonstration of high extinction distributed Bragg reflector (DBR) as pump rejection filter

Silicon Photonics Research at IIT Madras

Towards Field Programmable Photonic Gate Array (FPPGA)

Fiber Pigtailed and Packaged Devices (Collaboration: SAMEER, Mumbai) Funded by Department of Information Technology, Govt. of India (2008-2011)

2X2 Directional Coupler

1X8 Power Splitter

G. R. Bhatt, R. Sharma, U. Karthik and B. K. Das, "Dispersion-Free SOI Interleaver for DWDM Applications," IEEE J. Lightwave Technol, vol. 30, no. 1, pp. 140-146, 2012

OFTE

Centre for Programmable Photonic Integrated Circuits and Systems

BRICS Photonics

July 21, 2021

2X2 DWDM Channel Interleaver

VAIBHAV Summit - V7H5

Integrated Photonics and Communication

Background : State-of-the-art

Source: https://datacenterfrontier.com/the-switch-of-the-future-silicon-photonics-in-action/

VAIBHAV Summit - V7H5

Integrated Photonics and Communication

Where we stand in India

Source https://en.wikipedia.org/wiki/List_of_universities_in_India

Thank You

Centre for Programmable Photonic Integrated Circuits and Systems

BRICS Photonics