# Quantum speed limit for thermal states

Nikolay Il'in, <u>Oleg Lychkovskiy</u>

#### Seminar on complex quantum systems

Moscow Institute of Physics and Technology Feb 19, 2021

#### arXiv 2005.06416



Skolkovo Institute of Science and Technology





### What is quantum speed limit (QSL)?

closed quantum system (in general, in a mixed state):

 $i\partial_t \rho_t = [H, \rho_t]$ 

trace distance:  $D_{tr}(\rho_1, \rho_2) \equiv (1/2) tr |\rho_2 - \rho_1|$ 



Mandelstam-Tamm QSL (1945):

$$D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \Delta E t$$

out-of-equilibrium evolution

$$\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2}, \quad \langle A \rangle \equiv \operatorname{tr} \rho_0 A$$

observable in the initial (often equilibrium) state

## A remark on good and bad distances

In the many-body setting not all distances are equally meaningful!

Good distances (faithfully measure the distinguishability of states):

- trace distance
- Bures distance
- Hellinger distance

Bad distance:

• Hilbert-Schmidt distance – can nearly vanish for orthogonal states

see more in Markham *et al*, Phys. Rev. A 77, 042111 (2008)

#### Zoo of quantum speed limits

Mandelstam, Tamm (MT, 1945):  $D_{\rm tr}(\rho_0, \rho_t) \leq \Delta E t \qquad \Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2}$ 

Margolus, Levitin (ML, 1998):

$$D_{\rm tr}(\rho_0,\rho_t) \le \sqrt{2\,\overline{E}\,t} \qquad \overline{E} \equiv \langle H \rangle - E_{\rm gs}$$

Mondal, Datta, Sazim (MDS, 2016):  $D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \delta E t$ 

$$\delta E \equiv \sqrt{-\mathrm{tr}\left[\sqrt{\rho_0}, H\right]^2}$$

#### Thermal initial state

$$ho_0 = e^{-\beta H_0}/Z_0, \quad Z_0 = \mathrm{tr} e^{-\beta H_0}$$
  
initial Hamiltonian  
 $H = H_0 + V$   $V$   
perturbation

V is not assumed to be small

 $i\partial_t \rho_t = [H_0 + V, \rho_t]$ 

#### MT and ML QSLs for many-body thermal states

Mandelstam-Tamm:

$$D_{\rm tr}(\rho_0,\rho_t) \le \Delta E t \quad \Delta E \equiv \sqrt{\langle (H_0+V)^2 \rangle - \langle H_0+V \rangle^2}$$

 $\Delta E \sim \sqrt{N}$  in the thermodynamic limit (where N is the system size )

Margolus-Levitin:

$$D_{\rm tr}(\rho_0,\rho_t) \le \sqrt{2\,\overline{E}\,t} \qquad \overline{E} \equiv \langle H_0 + V \rangle - E_{\rm gs}$$



#### Quantum speed limit for a thermal initial state

$$\rho_0 = e^{-\beta H_0} / Z_0, \quad Z_0 = \text{tr}e^{-\beta H_0}$$

 $i\partial_t \rho_t = [H_0 + V, \rho_t]$ 

Thermal QSL: 
$$D_{\mathrm{tr}}(\rho_0,\rho_t) \leq \sqrt{\beta t} \sqrt[4]{-2\langle [H_0,V]^2 \rangle_\beta}$$

 $\langle A \rangle_{\beta} \equiv \operatorname{tr} \rho_0 A$ 

nain

sult

arXiv 2005.06416

#### T-QSL vs generic QSLs: infinite temperature

Finite Hilbert space with dimension d,  $\beta = 0$ 

#### T-QSL vs generic QSLs: infinite temperature

 $\beta = 0$   $\rho_t = \rho_0 = d^{-1} \mathbb{1}$   $D_{tr}(\rho_0, \rho_t) = 0$ 

MDS  $D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \delta E t$ MT  $D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \Delta E t$  $\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \sim \sqrt{N}$  $\delta E \equiv \sqrt{-\mathrm{tr}\left[\sqrt{\rho_0}, V\right]^2} = 0$ ML  $D_{\rm tr}(\rho_0, \rho_t) \leq \sqrt{2 \, \overline{E} \, t}$ thermal  $D_{\rm tr}(\rho_0,\rho_t) \leq \sqrt{\beta t} \sqrt[4]{-2\langle [H_0,V]^2 \rangle_{\beta}}$  $\sqrt{\overline{E}} \equiv \sqrt{\langle H \rangle - E_{\rm gs}} \sim \sqrt{N}$ 

#### T-QSL vs generic QSLs: trivial perturbation

trivial perturbation:  $[V, H_0] = 0$ 

$$i\partial_t \rho_t = [H_0 + V, \rho_t]$$
  
$$\rho_0 = e^{-\beta H_0}/Z_0$$

 $\rho_t = \rho_0$  $D_{\rm tr}(\rho_0, \rho_t) = 0$ 

#### T-QSL vs generic QSLs: trivial perturbation

 $[V, H_0] = 0$   $\rho_t = \rho_0$   $D_{tr}(\rho_0, \rho_t) = 0$ 

MDS  $D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \delta E t$ MT  $D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \Delta E t$  $\Delta E \equiv \sqrt{\langle H^2 \rangle - \langle H \rangle^2} \sim \sqrt{N}$  $\delta E \equiv \sqrt{-\mathrm{tr}\left[\sqrt{\rho_0}, V\right]^2} = 0$ ML  $D_{\rm tr}(\rho_0, \rho_t) \leq \sqrt{2 \, \overline{E} \, t}$ thermal  $D_{\rm tr}(\rho_0,\rho_t) \le \sqrt{\beta t} \sqrt[4]{-2} \overline{\langle [H_0,V]^2 \rangle_{\beta}}$  $\sqrt{\overline{E}} \equiv \sqrt{\langle H \rangle - E_{\rm gs}} \sim \sqrt{N}$ 

#### MDS QSL: computability issue

MDS 
$$D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \delta E t$$

$$\delta E^2 = -\mathrm{tr} \left[\sqrt{\rho_0}, V\right]^2 = 2 \operatorname{tr} \rho_0 V^2 - 2 \operatorname{tr} \sqrt{\rho_0} V \sqrt{\rho_0} V \le 2 \operatorname{tr} \rho_0 V^2$$

hard to compute in nontrivial cases

Modified MDS QSL: 
$$D_{\mathrm{tr}}(\rho_0, \rho_t) \leq \sqrt{2\langle V^2 \rangle_\beta} t$$

#### Local perturbation

local perturbation:  $\langle V^2 
angle_eta$  is finite in the thermodynamic limit

#### for finite-range interactions, if $\langle V^2 \rangle_{\beta}$ is finite, $\langle [H_0,V]^2 \rangle_{\beta}$ is also finite

#### T-QSL vs generic QSLs: local perturbation

$$\langle V^2 \rangle_\beta = O(1)_{N \to \infty}$$

$$\begin{array}{ccc} \mathsf{MT} & D_{\mathrm{tr}}(\rho_{0},\rho_{t}) \leq \Delta E \, t & \mathsf{MDS} \\ \Delta E \equiv \sqrt{\langle H^{2} \rangle - \langle H \rangle^{2}} \sim \sqrt{N} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & &$$

## Finitely disturbing perturbation

finitely disturbing perturbation:  $\langle [H_0,V]^2 \rangle_{eta}$  is finite in the thermodynamic limit

not every finitely disturbing perturbation is local

#### Example 1: spin-boson model

$$H_0 = \Omega \,\sigma^z + \frac{1}{\sqrt{N}} \,\sigma^x \sum_k g_k (a_k^{\dagger} + a_k) + \sum_k \omega_k \,a_k^{\dagger} a_k$$

$$V = \sum_k \delta \omega \, a_k^{\dagger} a_k$$
 — non-local, but finitely disturbing

MDS QSL: 
$$D_{\mathrm{tr}}(\rho_0,\rho_t) \leq \sqrt{2}\,\delta\omega\,t\,\overline{n}_\beta\,N$$

T-QSL: 
$$D_{\rm tr}(\rho_0, \rho_t) \le \sqrt{\delta \omega \, \widetilde{g} \, \beta \, t} \, \sqrt[4]{2(1+2 \, \widetilde{n}_\beta)}$$

 $\overline{n}_{\beta} \equiv \sum_{k} \langle a_{k}^{\dagger} a_{k} \rangle_{\beta} / N \qquad \qquad \widetilde{g}^{2} \equiv \sum_{k} g_{k}^{2} / N \qquad \qquad \widetilde{n}_{\beta} \equiv \sum_{k} g_{k}^{2} \langle a_{k}^{\dagger} a_{k} \rangle_{\beta} / \sum_{k} g_{k}^{2} \langle$ 

## Example 2: mobile impurity model

$$H_0 = H_{\rm f} + P^2/(2m) + H_{\rm imp-f} - \operatorname{impurity-fluid interaction term}$$

Hamiltonian of a fluid

mobile impurity particle with mass m, P – momentum of the impurity

 $H_{\rm f}$  describes a fluid in a 1D box of length L, with particle number N and particle density n=N/L

$$V = FX$$
   
  $\checkmark$  linear potential felt by the impurity,  
  $X$  – coordinate of the impurity

### Example 2: mobile impurity model

 $H_0 = H_{\rm f} + P^2 / (2m) + H_{\rm imp-f}$ 

V = FX — non-local, but finitely disturbing

MDS QSL: 
$$D_{tr}(\rho_0, \rho_t) \leq \sqrt{2/3} \frac{NFt}{n}$$
  
T-QSL:  $D_{tr}(\rho_0, \rho_t) \leq \sqrt{\beta t} \sqrt{(F/m)\sqrt{2\langle P^2 \rangle_{\beta}}}$ 

finite in the thermodynamic limit

## Performance of T-QSL vs general QSLs in the many-body setting: summary

|                                           | Mandelstam-Tamm | Margolus-Levitin | Mondal-Datta-Sazim | thermal |
|-------------------------------------------|-----------------|------------------|--------------------|---------|
| zero temperature                          | loose           | loose            | exact              | exact   |
| trivial perturbation                      | loose           | loose            | exact              | exact   |
| local perturbation                        | loose           | loose            | tight              | tight   |
| finitely disturbing nonlocal perturbation | loose           | loose            | loose              | tight   |

#### Generalization: time-dependent perturbation

$$i\partial_t \rho_t = [H_0 + V_t, \rho_t]$$

$$\rho_0 = e^{-\beta H_0} / Z_0, \quad Z_0 = \text{tr}e^{-\beta H_0}$$

$$D_{\rm tr}(\rho_0,\rho_t) \le \sqrt{\beta \, \int_0^t dt' \sqrt{-2 \, \langle [H_0, V_{t'}]^2 \rangle_\beta}}$$



- a new quantum speed limit for initially thermal states derived
- it explicitly exploits structure of the thermal state and depends on temperature
- can be dramatically tighter than generic QSLs in the many-body setting

#### arXiv 2005.06416

## Funding

#### Russian Science Foundation grant No 17-71-20158

Thank you for your attention!