

High speed Optical Communication systems Research in Brazil

PHOTONICAMP

PHOTONICS RESEARCH CENTER

atório de Eletron

^{.ado} e Computa

Hugo E. Hernández Figueroa

• FOTONICOM

National Institute of Photonics and Optical Communications

Applied and Computational Electromagnetics Group School of Electrical and Computer Engineering University of Campinas – Brazil

Distance between the cities of São Paulo and Campinas: about 100 Km

Distance between the cities of São Paulo and Campinas: about 100 Km

PHOTONICAMP

PHOTONICS RESEARCH CENTER at University of Campinas (UNICAMP) Inaugurated in August 2018

PHOTONICAMP

PHOTONICS RESEARCH CENTER at University of Campinas (UNICAMP)

* Optical Communications Labs* Photonic Devices Characterization Labs

UNICAMP's Labs

Semiconductor Component Center for Nanotechnology (CCS-Nano): Fabrication Labs for Photonic and Microwave Integrated Devices

Dual FIB (Focused Ion Beam), electron beam lithography, Sol, SiN and III-V fabrication platforms

FOTONICOM's RESEARCH LINES

Our main goal is to develop the devices and techniques to allow data transmission at rates of 1 Tb/s and beyond with focus on industry-ready prototypes.

FOTONICOM project is divided into four research lines:

- Devices-Phenomena (DEP);
- Devices-Applications (DEA);
- Systems (SYS); and
- Networks (NET).

Each one has a leader responsible for the coordination of the groups and institutions in collaboration under that line; this structure is presented next.

Devices-Phenomena Newton Cesário Frateschi Gustavo da Silva Wiederhecker UNICAMP-IFGW (DEP) UNICAMP-IFGW Thiago Pedro Mayer Alegre UNICAMP-IFGW			· · · · · · · · · · · · · · · · · · ·	
Devices-Phenomena Newton Cesario Frateschi (DEP) UNICAMP-IFGW	Destant Diversion	Nantan Garíaia Eastarabi	Gustavo da Silva Wiederhecker	UNICAMP-IFGW
(DEF) UNICAMP-IFGW	Devices-Phenomena	INICAMP IECW	Thiago Pedro Mayer Alegre	UNICAMP-IFGW
Lázaro Aurélio Padilha Jr. UNICAMP-IFGW	(DEP)	UNICAMP-IFGW	Lázaro Aurélio Padilha Jr.	UNICAMP-IFGW
Lucas Heitzmann Gabrielli UNICAMP-FEEC			Lucas Heitzmann Gabrielli	UNICAMP-FEEC
Paulo Clóvis Dainese Jr. UNICAMP-IFGW	Devices Applications	Iluco Fanicus Ilemandez Fistores	Paulo Clóvis Dainese Jr.	UNICAMP-IFGW
(DEA) UNICAMP EFEC UFBA	Devices-Applications	Hugo Enrique Hernandez Figueroa	Vitaly Felix Rodriguez Esquerre	UFBA
Júlio César Rodrigues F. de Oliveira BrPhotonics	(DLA)	UNICAMP-FEEC	Júlio César Rodrigues F. de Oliveira	BrPhotonics
Michal Lipson Columbia University			Michal Lipson	Columbia University
Aldário Chrestani Bordonalli UNICAMP-FEEC			Aldário Chrestani Bordonalli	UNICAMP-FEEC
Cristiano de Mello Gallep UNICAMP-FT			Cristiano de Mello Gallep	UNICAMP-FT
SystemsEvandro ConfortiDarli Augusto de Arruda MelloUNICAMP-FEEC	Systems	Evandro Conforti	Darli Augusto de Arruda Mello	UNICAMP-FEEC
(SYS) UNICAMP-FEEC Júlio César Rodrigues F. de Oliveira BrPhotonics	(SYS)	UNICAMP-FEEC	Júlio César Rodrigues F. de Oliveira	BrPhotonics
Juliano Rodrigues Fernandes de Oliveira CPqD			Juliano Rodrigues Fernandes de Oliveira	CPqD
Andrew Chraplyvy Bell Labs			Andrew Chraplyvy	Bell Labs
Christian Esteve Rothenberg UNICAMP-FEEC			Christian Esteve Rothenberg	UNICAMP-FEEC
Gustavo Bittencourt Figueiredo UFBA	Netwoules	Nalaan Luis Saldanha da Fangaaa	Gustavo Bittencourt Figueiredo	UFBA
Networks INelson Luis Saldania da Fonseca Joaquim Ferreira Martins Filho UFPE	Networks (NET)	INICAMPIC	Joaquim Ferreira Martins Filho	UFPE
Carmelo José Albanez Bastos Filho UFPE		UNICAMIT-IC	Carmelo José Albanez Bastos Filho	UFPE
Juliano Rodrigues Fernandes de Oliveira CPqD			Juliano Rodrigues Fernandes de Oliveira	CPqD

Across all **4 Research Lines**, our team work in synergy aiming to excel in the following **8 Research objectives**:

1. *Modulation* (MOD) – MOD aims at the next generation **nanophotonic electrooptical modulators** and **advanced modulation formats** for beyond terabit per second integrated transceivers.

2. Optical Signal Processing (OSP) – OSP aims to alleviate the processing load required from the electronic systems in high-speed transceivers (especially in the case of coherent receptors) by executing part of the processing in the optical domain with bandwidth and power consumption advantages.

3. Nonlinear Optics (NLO) – NLO deals with the advances in nonlinear network devices, in particular with **optical signal amplification and regeneration (includng 2D materials)**, as well as the control of such devices in cascaded configurations on the system and network layers.

4. Photonics Crystals (PHC) – The field of photonic crystals promises incomparable functionalities for optical networks in terms of footprint reduction and advanced signal processing. The focus here is to reduce **the scattering losses**, that still prevent the widespread use of this technology, while pushing the limits in asymmetric transmission devices in direct collaboration with OSP.

5. Spatial Division Multiplexing (SDM) – SDM focuses on enabling space division multiplexing in both fiber and free-space optical systems by developing the necessary devices to couple, process, and discriminate modes in an integrated platform.

6. Free Space Optics (FSO) – High data rate transmissions must also include the requirements of mobile platforms, where only wireless links can be employed. FSO will focus on the enabling technologies for wireless optical links in NIR for indoor systems as well as chip-to-chip or board-to-board channels (including photonics antennas in opt. comm. wavelenghts and THz).

7. Transport (TRA) – TRA deals with the resource management and spectral allocation in next generation flexgrid networks with efficient bandwidth utilization and power consumption without compromising the quality of transmission, both in the network and device layers.

8. Control (CTL) – CTL focuses on algorithms and strategies for the reconfiguration of software defined networks at the control plane, employing adaptive, predictive and cognitive actuation on the operating points of network elements in close synergy with NLO and TRA.

Research objectives are divided in **research topics**.

Matrix showing the *research topics* linked to each *research line* and *researcher*.

Institution	Percentrahon	Research Objectives							
	Researcher	MOD	OSP	NLO	РНС	SDM	FSO	TRA	CTL
UNICAMP IFGW	Newton C. Frateschi	RSR		SRC1			OMEC2		
UNICAMP IFGW	Gustavo da S. Wiederhecker		OMEC1						
UNICAMP IFGW	Thiago P. M. Alegre			COMB					
UNICAMP IFGW	Lázaro A. Padilha Jr.			MAT					
UNICAMP FEEC	Hugo E. H. Figueroa	MOD1	OFDM2			OAM	ANT		
UNICAMP FEEC	Lucas H. Gabrielli					COUP	ANT		
UNICAMP IFGW	Paulo C. Dainese Jr.			PARA	SCA	MMWG			
UFBA	Vitaly F. R. Esquerre		GATE		ASYM		HYP		
BrPhotonics	Júlio César R. F. de Oliveira	MOD1							
Columbia University	Michal Lipson			PARA		COUP			
UNICAMP FEEC	Evandro Conforti	MOD2		SOA		MIMO		TB	
UNICAMP FEEC	Aldário C. Bordonalli	OFDM1							
UNICAMP FT	Cristiano de M. Gallep			SOA				TB	
UNICAMP FEEC	Darli A. de A. Mello					MIMO			
BrPhotonics	Júlio César R. F. de Oliveira	MOD2							
CPqD	Juliano R. F. de Oliveira	OFDM1						ROADM TB	
Bell Labs	Andrew Chraplyvy					OAM MIMO			
UNICAMP IC	Nelson L. S. da Fonseca			COG				FLEX	SDN1 SDN2
UNICAMP FEEC	Christian E. Rothenberg								SDN1 SDN2
UFBA	Gustavo B. Figueiredo							FLEX	SDN1
UFPE	Joaquim F. M. Filho			COG				FLEX	
UFPE	Carmelo J. A. B. Filho			COG				FLEX	
CPqD	Juliano R. F. de Oliveira							INT	SDN2

14

FOTONICOM's Some Highlight Results

"Optimization of the electromagnetic scattering problem based on the topological derivative Method", Vol. 27, No. 23 / 11 November 2019 / Optics Express

Novel Optimization Technique: Topological Derivative

Reflectivity: -0.3 dB (2.5 × 2.5 μ m²)

PHOTONICAMP

SEM images

a-c) PITA, J. L., et al., OSA Optics Express, Vol. 26, No. 3, pp. 2435-2442, 05 February 2018.

d) Grating antenna - J Sun et al.., Largescale nanophotonic phased array. *Nature*, *493*(7431), 195-199 (2013).

Laboratory of Electronics, MIT.

PHOTONICAMP

DNICOM

Far-field pattern

PHOTONICAMP

Limitations in Optics

- Large dielectric antennas > λ
- Large feeding dielectric network due to evanescent tails

PHOTONICAMP

Sunflower Seed Array

Design based on **Fermat's spiral** (bio-inspired by sunflower seeds arrange)

Regularly-spaced elements, but aperiodic (no numerical optimization)

Ultra wideband, but more complex feeding network: why not use in optics?

GABRIELLI, et al., IEEE Photonics Technology Letters. Vol. 28, No. 2, pp. 209-212, January15, 2016.

Directivity, SLL Reduction and Bandwidth

Nanoantenna-arrays and feeding network

Nanoantenna-arrays and feeding network

Separation of about 6^λ

Nanoantenna arrays

PITA, J. L. et al., OSA Optics Express, Vol. 25, No. 24, 27 Nov 2017

Experimental Evaluation

Ultra-sparse arrays: Square × Sunflower

 $\lambda = 633 \text{ nm}$

d = 367.7 μm = 581λ

Antenna: SLM (Spatial Light Modulator) Grating aperture (measurement in the 1st grating lobe to minimize noise)

Far-Field Measurements

26

Development of a transmission system fully based on coherent technology using superchannels towards applications in *flexgrid* networks.

OFCG (*Optical Frequency Comb Generator*) of Transmissor: (a) Experimental diagram and (b) frequency comb with separation of 19,9994 GHz.

Figura 2: Diagrama do OFCG do receptor.

Spectra produced by OFCG of receptor, when (a) there is not equalization adjustment, (b) with equalization adjustment for 9 central lines and (c) with equalization adjustment for 15 central lines.

FOTONICOM's BRICS Contacts Professor Yungui Ma (马云贵)

Joint International Research Laboratory of Photonics (Ministry of Education) State Key Laboratory for Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University (ZJU)

"Belt-Road" & "BRICS" Forum for Advanced Photonics

ZJU, Dec 2019 Hangzhou, Zhejiang, China

ZJU, Dec 2019 - Hangzhou, Zhejiang, China

ZJU, Dec 2019 - Hangzhou, Zhejiang, China

Professor Anurag Sharma IIT Delhi, India

AGRADECIMENTOS

UNICAMP

