

High Speed Optical Communication

Status and Prospects

Deepa Venkitesh

Professor, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India deepa@ee.iitm.ac.in

High-speed Optical Communication - Trends

Largest demand for capacity in

- •Data center networks
- •Fronthaul and backhaul for advanced wireless systems

P. J. Winzer and D. T. Neilson, A. Chraplyvy "Fiber Optic Transmission and Networking : the previous 20 and the next 20 years", Opt. Exp., 2018

STAN INST High Speed Optical Communication : **Critical Work Elements** INDIA Jammu - Kashmi Himacha Pradesh **Networks IIT Kanpur** Harvar IIT Ropar Raiasthan làgaland Bihar Gawaha Sub-systems Systems Tripura harkhan West Madhya Pradesh CGCRI, IIT Bombay Daman and Diu **IIT Kharagpur** Dadra and **Components/Devices** Nagar Haveli **Fundamental research** 11\$c Bengaluru Modeling and Simulation **IIT** Madras **Experimental Realizations** Andaman and Nicobar Island

+ few companies

• Industry- Production

• Optical control of phased array antennas

Comp. EM

Radar Systems

Optical Signal Proc., **Opt Comm**

Structured Light

Fiber Systems Structured Light

Strengths :

Combination of strengths in RF, Signal processing and Photonics Vertical integration from devices to systems

Silicon Photonics Research at IIT Madras (Since 2006)

In-house silicon photonics technology

ICPRIE System

PhW Waveguide (SEM)

Directional Coupler (SEM)

Fiber-Optic Probe Station

Grating Coupler (SEM)

Microring Resonator (SEM)

DBR Filter (SEM) $\lambda_B = 2 \ n_{eff} \Lambda$ Reith

On-going Projects

□ PN/PIN waveguides (electro-optic modulators)

□ Integrated optical microheaters (thermo-optic switches)

□ Sub-wavelength grating waveguide filters (add-drop multiplexer)

□ Integrated quantum photonic devices (design and demonstration)

Centre for NEMS and Nanophotonics

Deepa Venkitesh, deepa@ee.iitm.ac.in

ATEN NETO

Long haul Systems

- 100 Gbps with PM QPSK
- 200 Gbps with PM16QAM
- 400, 526 GBps with Nyquist WDM
- MDM with Few mode Fibers

Access Networks

- OFDM for PON
- Analog IFoF for front-hauling in wireless systems

Underwater communication

Optical Signal Processing

- Wavelength conversion
- Phase quantization
- Logic gates
- Clock recovery

- Information is distributed over several coherent optical states
- Alice sets phase $(0,\pi)$, Bob will detect either in DET1 or DET2.
- Bob publicly announces the time intervals when he makes a detection
- Alice retains bits from those time intervals as key bits

Inoue et al, "Differential phase shift QKD, Phys. Rev. Lett., **89**, 2002. Diamenti E, Security and Implementation of DPS-QKD, PhD thesis, Stanford Univ., 2006

Anil Prabhakar, anil@ee.iitm.ac.in

MoUs with BRICS countries

MoUs with BRICS countries

ALUMANI RELATIONS IN ADDRES	INT Ind	ERNAT ian Institu	ION te Of	IAL RE Technolog	L ATION gy Madras	S		NUTE OF TEC	AN OLOCY MADO	
Home About Us Students	Faculty	Departments	MoU	Downloads	Event Calender	News	Gallery	Contact Us	Q	
BOTSWANA										
CANADA										
CHINA										
Beijing Jiatong Technology University										
Dalian University										
Huazhong University of Sciences and Technology										
Shanghai International Studies University, Shanghai										

Moving on to some other institutes ... (only representative)

Circuits and Architectures for Low Power Data Center Interconnects

Shalabh Gupta, IIT Bombay

Equalized 16-QAM received signal (System tested up to 132 Gbps)

Key demonstrations at OFC 2017, 2019 Indian & US patents pending

Mode-Division Multiplexing with offset coupling Kumar Appaiah, IIT Bombay

PM Codebook

Key ideas: enhancement of fiber capacity with offset coupling and feedback
 Potentially leads to higher throughput in short and medium-haul links
 Initial results: solution can lead to reduced energy-per-bit, esp. In FTTH and data centre links, experimental evaluation underway

 Image: And Conception
 PM Codebook

 Image: And Conception
 Image: And Codebook

 Image: And Codebook
 Image: And Codebook

Offset coupling at transmitter/receiver

Department of Electrical Engineering, IIT

Bombay

Optical Communication: Current research activities at IIT Kharagpur (SK Varshney, Dept of E&ECE)

Quantum Communication

Optical Wireless (LiFi, Underwater)

Few-mode fiber components for high speed access network

Microring resonators based devices for on-chip optical communication

Integrated WDM source (Frequency comb)

Fiber based as well free space

Mode division MuX and Demux

PHYSICAL REVIEW A 99, 033848 (2019)

Free-carrier-driven Kerr frequency comb in optical microcavities: Steady state, bistability, self-pulsation, and modulation instability

R. Haldar,^{1,*} A. Roy,^{1,2} P. Mondal,³ V. Mishra,³ and S. K. Varshney¹ ¹Department of Electronics and Electrical Communication Engineering, IIT Kharagpur-721302, West Bengal, India ²Electrical Engineering Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA ³Department of Physics, IIT Kharagpur-721302, West Bengal, India

(Received 16 January 2019; published 25 March 2019)

Silicon Photonics: Bringing optical communication into the chip (K Debnath, E&ECE Dept., IIT Kharagpur)

Electro-optic Modulators

SILICON PHOTONICS @ IIT GUWAHATI

- Active and passive devices for C-band optical communication
 - Low cost, low power, and high efficiency
- Group IV modulators enhanced modulation

SiGe phase shifters*

- High speed PN diodes
- < 1 V.cm modulation efficiency
 @ -5 V
- < 2 dB insertion loss

Mach-Zehnder modulators*

- G-S-G-S-G traveling wave design
- Operating voltage: < 5 V_{pp}
- 3 dB bandwidth: > 70 GHz
- Speed: > 100 Gbps over single channel with NRZ-OOK modulation
- BER < HD-FEC threshold
- Energy-per-bit: < 1pJ
- * Simulation results

GROUND SIGNAL GROUND SIGNAL GROUND GROUND BOX

Advantage over current silicon optical modulators

- Higher speed
- Lower energy-per-bit
- Greater fiber transmission length
- Higher received power tolerance
- Higher fiber dispersion tolerance

SILICON PHOTONICS @ IIT GUWAHATI

• Hybrid (de)multiplexers for enhanced channel capacity @1550 nm

<u>TE Mode-Division Multiplexer*</u> <u>TM Mode-Division Multiplexer*</u>

- Simulation: 2D FDTD
- 3 mode channels
- Insertion loss > -1.27 dB
- Return loss < -8.65 dB
- Crosstalk < -15.31 dB

- Simulation: 2D FDTD
 - 3 mode channels
 - Insertion loss > -2.01 dB
 - Return loss < -9.17 dB
 - Crosstalk < -8.05 dB

Hybrid Mode and Polarization Division Multiplexer*

- Simulation: 2.5D FDTD
- 5 mode channels (3 TE and 2 TM)
- Insertion loss > -0.76 dB
- Return loss < -11.23 dB
- Crosstalk < -12.42 dB

Photonics Research Group

*

- Website: <u>https://iitg.ac.in/sonkar/index.html</u>
- Faculty: Dr. Ramesh Kumar Sonkar
- Group publications: https://iitg.ac.in/sonkar/PRG%20IITG%20-Publications-.htm

Optical Communications @IITD

- Faculty: A. Choudhary, A. Dixit, J. Ghosh, V. Venkataraman
- Visible Light communications
- Free space optical communications (a)
- ML for Nonlinearity compensation
- Self coherent optical communications (b)
- Single-photon sources and QKD
- Optical Access Networks (c)
- Integrated Optical Source development (d)

AN INST

Microwave Photonics @IITD

- Faculty involved: A. Choudhary & A. Dixit
- Radio over fiber for high data rates (a)
- **RF** signal generation
- Microwave photonic filters (b) ۲
- Brillouin microwave processors (c)
- **Photonics Radar**
- Phase shifters to 60 GHz (d)

Activities on High Speed Optical Communication @ IIT Patna (Dr Sumanta Gupta & Group)

- Medium and Short Reach Fiber Optic Communication Systems
 - DSP & ML enabled Polarization multiplexed WDM transmission
 - SMF and MMF based link using novel modulation, multiplexing, and reception
 - Characterization using test-bed
- Free Space WDM Optical Communication
 - Gbps rate transmission over C-band with offline DSP at Rx
 - Test-bed for turbulent multiplexed channel
- Underwater Wireless Optical Communication
 - Mbps rate transmitter receiver prototype development
 - Modeling and characterization of underwater channel
 - For AUV and underwater divers
- Si Photonics Device Modeling and Simulation
 - Low power & high speed modulator and switch
 - Strain engineering in passive devices

Other Activity: Optical Fiber Based DAS for Intrusion Detection

Mahindra University Hyderabad Ecole Centrale School of Engineering

Indian Institute of Technology Delhi Physics Department

Optical Engineering 58(3), 037102 (March 2019)

Design of a silicon-on-calcium-fluoride-based ultracompact and highly efficient polarization splitter for the midinfrared

Babita Kumari,^a Ravendra K. Varshney,^{a,*} and Bishnu P. Pal^b ^aIndian Institute of Technology Delhi, Physics Department, New Delhi, India ^aSchool of Natural Sciences, Mahindra Ecole Centrale, Hyderabad, India

Optik - International Journal for Light and Electron Optics 180 (2019) 71-83

Original research article

Design of a promising silicon slot waveguide-based ultra-short low loss efficient polarization rotator for the mid-IR

Babita Kumari^a, R.K. Varshney^{a,*}, Bishnu P. Pal^b

³ Physics Department, Indian Institute of Technology Delhi, New Delhi, 110016, India^b School of Natural Sciences, Mahindra École Centrale, Hyderabad, 500043, India

Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Research paper

Design of chip scale silicon rib slot waveguide for sub-ppm detection of N_2O gas at mid-IR band

No.	Contents lists available at ScienceDirect	Z
	Sensors and Actuators B: Chemical	SENSORS -
EVIER	journal homepage: www.elsevier.com/locate/snb	Sect

Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor

Babita Kumari^a, Ajanta Barh^{a,1}, R.K. Varshney^{a,*}, B.P. Pal^b

^a Physics Department, Indian Institute of Technology Delhi, New Delhi 110016, India ^b School of Natural Sciences, Mahindra École Centrale, Hyderabad 500043, India

Design of a silicon-on-calcium-fluoride-based compact and efficient polarization rotator for the mid-IR

BABITA KUMARI,¹ R. K. VARSHNEY,^{1,*} AND B. P. PAL²

¹Physics Department, Indian Institute of Technology Delhi, New Delhi-110016, India ²School of Natural Sciences, Mahindra École Centrale, Hyderabad-500043, India *ravi@physics.litd.ac.in

High Power, High Repetition Rate Optical Frequency Combs @ IISc Bangalore

Goal: High Power, high repetition rate optical frequency combs for applications in metrology and optical communications.

Step 1: Directly modulated combs with tunable frequency and repetition rate (10-40GHz)

OPTICAL FIBERS FOR HIGH DATA RATE COMMUNICATION AND HIGH POWER FIBER LASERS

GI clad LMA Fiber

Multilayer clad LMA Fiber

n(r)

Dual-shape core LMA Fiber

FMEDFA for SDM Communication System

Vipul Rastogi, Indian Institute of Technology Roorkee

Microwave Photonics @ Indian Institute of Science Education & Research, Kerala

Optical Communications @ IIT Kanpur

Parallelized EKF bank

Optical Fiber Modeling

Macro and Micro-bend theory Bend-insensitive fibers for FTTH

Wideband Optical Chaos

25 GHz bandwidth chaos in EDFRLs High-speed random number generation

Pradeep Kumar K, pradeepk@iitk.ac.in

Representative Examples of Photonics Industry

Industry :

NEST Photonics Devices/Components/Subsystems

Optiwave Photonics (Erbium doped fiber amplifiers)

Fiber Optika (Educational Kits for communication)

Preston Engineering (Components) and so on...

Lightmotif Hyderabad

- Focus:
 - Microwave Photonics
 - RF to optical conversion
- Products:
 - Radio over fiber links up to 6GHz
 - Fiber optic transmitters, receivers and signal distribution for Radars
 - Submarine tethered communication links

Enabling the Indian Army to communicate across the no network zones of Ladakh and Kashmir.

- Digital Signal Processing algorithms for high-speed communication systems
- Optical Signal Processing Phase conjugation, phase sensitive amplification, wavelength conversion for improving the efficiency of high speed communication systems (both long haul and short reach)
- Analog/hybrid communication for bandwidth efficient fronthaul for advanced wireless networks
- Devices, subsystems and systems for photonic Radars.

- Packaging facility for Photonic Integrated Circuits
 - Lasers, VCSELs
 - Transponders
 - Other network components
- Sharing fabrication facilities
- Real-time test beds for high speed communication > 10 Tbps
- Real time test beds for Advanced Wireless Fronthauling