
Non-diagonal problem Hamiltonian
for adiabatic quantum computation

Oleg Lychkovskiy

Skolkovo Institute of Science and Technology

Steklov Mathematical Institute

TU Delft, 03 Feb 2019

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 1 / 25



Overview

1 Brief introduction to AQC

2 Monotone not-all-equal 3-satisfiability

3 Bottlenecks of AQC

4 Non-diagonal problem Hamiltonian

5 Summary

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 2 / 25



Brief introduction to AQC

Adiabatic quantum computation

Adiabatic quantum computation (AQC) – two-step procedure:

map a computational problem to a problem Hamiltonian Hp with a
ground state encoding the solution

prepare this ground state adiabatically:

Ht = (1− t

T
)H0 +

t

T
Hp

adiabatic condition: TN ∼ 1/∆2
N
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Brief introduction to AQC

Appeals of AQC

an elegant idea

good implementation prospects

multiple interrelations with condensed matter physics
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Brief introduction to AQC

Challenges of AQC

run time T not known rigorously (for most of the algorithms)

there is strong evidence that T can often scale unfavorably with the
problem size N
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Monotone not-all-equal 3-satisfiability

Monotone not-all-equal 3-satisfiability (MNAE3SAT)

N bits z = (z1, z2, ..., zN) (we take zi = ±1)

Instance of the problem:

set C of M clauses

clause = (i , j ,m), i , j ,m ∈ [1,N] are pairwise nonequal

a clause satisfied whenever (zi , zj , zj) are not all equal

z is a solution (satisfying assumption) if all clauses from C are satisfied

MNAE3SAT is NP-complete
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Monotone not-all-equal 3-satisfiability

MNAE3SAT as a binary optimization problem

MNAE3SAT = binary optimization problem with the cost function

Hcl
p (z) =

∑
(i ,j ,m)∈C

C cl
ijm(z)

with

C cl
ijm(z) =

{
1 if zi = zj = zk ,
0 otherwise.

Hcl
p (z) ≥ 0

z is a satisfying assignment ⇔ Hcl
p (z) = 0
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Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

with

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)

Hp diagonal in the product basis of

|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp is frustration-free:

H|z〉 = 0 ⇔ ∀ (i , j ,m) ∈ C Cijm|z〉 = 0.

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 8 / 25



Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

with

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
Hp diagonal in the product basis of

|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp is frustration-free:

H|z〉 = 0 ⇔ ∀ (i , j ,m) ∈ C Cijm|z〉 = 0.

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 8 / 25



Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

with

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
Hp diagonal in the product basis of

|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp is frustration-free:

H|z〉 = 0 ⇔ ∀ (i , j ,m) ∈ C Cijm|z〉 = 0.

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 8 / 25



Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp ≥ 0

z is a satisfying assignment ⇔ z is a gs, i.e. Hp|z〉 = 0

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 9 / 25



Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp ≥ 0

z is a satisfying assignment ⇔ z is a gs, i.e. Hp|z〉 = 0

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 9 / 25



Monotone not-all-equal 3-satisfiability

Conventional Hp for MNAE3SAT

Hp =
∑

(i ,j ,m)∈C

Cijm

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
|z〉 ≡ |z1, z2, ..., zN〉, σzj |z〉 = zj |z〉

Hp ≥ 0

z is a satisfying assignment ⇔ z is a gs, i.e. Hp|z〉 = 0

Oleg Lychkovskiy (Skoltech, Steklov) Non-diagonal Hp for AQC TU Delft, 03 Feb 2019 9 / 25



Bottlenecks of AQC

Bottlenecks of AQC

Bottleneck of AQC = avoided level crossings with ∆ ∼ e−N
α
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Bottlenecks of AQC

Two types of bottlenecks

Quantum phase transitions

Many-body localised (glassy) phase [Altshuler, Krovi, Roland, 2010;
Laumann et al. 2015; Knysh 2016; ...]
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Bottlenecks of AQC

“Conventional” AQC

Ht = (1− t

T
)H0 +

t

T
Hp

Hp =
∑
i ,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

Ĥ0 =
∑
i

σxi
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Bottlenecks of AQC

Ways to improve the performance of AQC

modify H0

modify Ht for 0 < t < T (catalyst Hamiltonians etc)

modify Hp
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Bottlenecks of AQC

What is wrong with a conventional Hp?

in disordered systems eigenstates can be
many-body localised (MBL)

MBL entails small energy gaps

product states are ultimately localised

eigenstates of Hp are of product form, hence
the evolution inevitably traverses MBL phase
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Non-diagonal problem Hamiltonian

Non-diagonal problem Hamiltonian

ground state of Hp is of product form for a purpose – it should be
easily measurable

however, excited states of Hp are also product states – absolutely
unnecessary for computation!

the idea is to introduce Hent
p with a product ground state and

entangled excited states
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Non-diagonal problem Hamiltonian

Non-diagonal problem Hamiltonian

Reminder:
Hp =

∑
(i ,j ,m)∈C

Cijm

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)
A problem Hamiltonian (generically) non-diagonal in comp. basis:

Hent
p =

∑
(i ,j ,m)∈C

CijmAijmCijm

Aijm – arbitrary positive non-diagonal term

Aijm not necessarily acts on spins i , j ,m
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Non-diagonal problem Hamiltonian

Non-diagonal problem Hamiltonian

Hent
p =

∑
(i ,j ,m)∈C

CijmAijmCijm

Cijm =
1

4

(
1 + σzi σ

z
j + σzj σ

z
k + σzkσ

z
i

)

A specific choice of Aijm:

Aijm = 2 + σxi σ
x
j σ

x
m + σxr σ

x
s

r 6= i , j ,m and s 6= i , j ,m

Locality issue: Hent
p is 4-local (while Hp is only 2-local)
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Non-diagonal problem Hamiltonian

Entanglement of eigenstates of Hent
p

Participation ratio – figure of merit for entanglement:

R(Ψ) =

 2N∑
µ=1

|Ψµ|4
−1

.
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Non-diagonal problem Hamiltonian

Entanglement of eigenstates of Hent
p

Participation ratios of eigenstates of Hent
p (blue dots) compared to those of

eigenstates of a nonintegrable Ising model.
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Non-diagonal problem Hamiltonian

Entanglement of eigenstates of Hent
p

ground states are product states with R = 1

some excited states have small R ∼ 1

entanglement of most of low lying excited states is comparable to that of a
bona fide chaotic model

work in progress...
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Non-diagonal problem Hamiltonian

Non-diagonal problem Hamiltonian - generalisation

Diagonal frustration-free problem Hamiltonian:

Hp =
∑

(i ,j ,m)∈C

Cijm, Cijm ≥ 0

Product ground state |z〉 with zero energy: Hp|z〉 = 0

Non-diagonal frustration-free problem Hamiltonian:

Hent
p =

∑
(i ,j ,m)∈C
(n,l ,q)∈C

CnlqA
nlq
ijmCijm, Anlq

ijm > 0

has the same ground state, Hent
p |z〉 = 0

but (generically) entangled excited eigenstates.
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Summary

Summary

mapping computational problem to the problem Hamiltonian is an
important ingredient of AQC

the mapping can be done in many different ways

a problem Hamiltonian with entangled excited states can always be
chosen

entanglement comes for the price of increased non-locality

such problem Hamiltonians may help in evading localisation
bottlenecks of AQC

more work is needed to evaluate their performance
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Summary
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Summary

Thank you for your attention!
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